From 3b67ffebbd8e5074bfd2e2f05530109705d9be7b Mon Sep 17 00:00:00 2001 From: Guillaume Pasero <guillaume.pasero@c-s.fr> Date: Fri, 30 Sep 2016 17:20:58 +0200 Subject: [PATCH] DOC: fix indentation for rst --- Documentation/Cookbook/rst/recipes/pbclassif.rst | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/Documentation/Cookbook/rst/recipes/pbclassif.rst b/Documentation/Cookbook/rst/recipes/pbclassif.rst index 0f5a7ce801..a8e79cc7a0 100644 --- a/Documentation/Cookbook/rst/recipes/pbclassif.rst +++ b/Documentation/Cookbook/rst/recipes/pbclassif.rst @@ -104,10 +104,10 @@ There are several strategies to compute those sampling rates: of samples, which is user-defined. * **Smallest class strategy:** The class with the least number of samples will be fully sampled. All other classes will be sampled with the -same number of samples. + same number of samples. * **Percent strategy:** Each class will be sampled with a user-defined percentage (same value for all classes) of samples available in this -class. + class. * **Total strategy:** A global number of samples to generate is divided proportionally among each class (classes proportions are enforced). @@ -269,7 +269,7 @@ image. - *Mode = equal:* For each image :math:`i` and each class :math:`c`, :math:`N_i( c ) = (total / L) * (\frac{Ti(c)}{sum_k(Ti(k))})` where :math:`total` is the total number of samples specified - *Mode = custom:* For each image :math:`i` and each class :math:`c`, - :math:`Ni( c ) = total(i) * (\frac{Ti(c)}{sum_k(Ti(k))})` where :math:`total(i)` is the total number of samples specified for image :math:`i` + :math:`Ni( c ) = total(i) * (\frac{Ti(c)}{sum_k(Ti(k))})` where :math:`total(i)` is the total number of samples specified for image :math:`i` * **Strategy = smallest class** @@ -722,6 +722,7 @@ used to predict output values. The applications to do that are and . .. figure:: ../Art/MonteverdiImages/classification_chain_inputimage.jpg .. figure:: ../Art/MonteverdiImages/classification_chain_fancyclassif_CMR_input.png .. figure:: ../Art/MonteverdiImages/classification_chain_fancyclassif_CMR_3.png + Figure 6: From left to right: Original image, fancy colored classified image and regularized classification map with radius equal to 3 pixels. The input data set for training must have the following structure : -- GitLab