diff --git a/Utilities/ITK/Code/BasicFilters/itkBinaryThresholdImageFilter.h b/Utilities/ITK/Code/BasicFilters/itkBinaryThresholdImageFilter.h index 19e21bff4d919ad27e52294d7e3c597fb9769d6d..40dc75874c1fa8f327c8b4d5c80cf4c252d2030e 100644 --- a/Utilities/ITK/Code/BasicFilters/itkBinaryThresholdImageFilter.h +++ b/Utilities/ITK/Code/BasicFilters/itkBinaryThresholdImageFilter.h @@ -37,7 +37,7 @@ namespace itk * More precisely * \f[ Output(x_i) = \begin{cases} - InsideValue & \text{if $LowerThreshold \leq x_i \leq UpperThreshold$} \ \ + InsideValue & \text{if $LowerThreshold \leq x_i \leq UpperThreshold$} \\ OutsideValue & \text{otherwise} \end{cases} \f] diff --git a/Utilities/ITK/Code/BasicFilters/itkContourDirectedMeanDistanceImageFilter.h b/Utilities/ITK/Code/BasicFilters/itkContourDirectedMeanDistanceImageFilter.h index 27fbbe506748a456abfba1fece6b36e4d61f0e72..d71f006b42e48ac062810331de9f653312e56730 100644 --- a/Utilities/ITK/Code/BasicFilters/itkContourDirectedMeanDistanceImageFilter.h +++ b/Utilities/ITK/Code/BasicFilters/itkContourDirectedMeanDistanceImageFilter.h @@ -30,7 +30,7 @@ namespace itk { * * ContourDirectedMeanDistanceImageFilter computes the distance between the set * non-zero pixels of two images using the following formula: - * \f[ h(A,B) = \mean_{a \in A} \min_{b \in B} \| a - b\| \f] + * \f[ h(A,B) = mean_{a \in A} \min_{b \in B} \| a - b\| \f] * where \f$A\f$ and \f$B\f$ are respectively the set of non-zero pixels * in the first and second input images. It identifies the point \f$ a \in A \f$ * that is farthest from any point of \f$B\f$ and measures the distance from \f$a\f$ diff --git a/Utilities/ITK/Code/BasicFilters/itkSigmoidImageFilter.h b/Utilities/ITK/Code/BasicFilters/itkSigmoidImageFilter.h index 94da66b6610cf491a8c924adbaf47fbf658975b7..035e274913205d2a9d56ad19b65930264a84a153 100644 --- a/Utilities/ITK/Code/BasicFilters/itkSigmoidImageFilter.h +++ b/Utilities/ITK/Code/BasicFilters/itkSigmoidImageFilter.h @@ -29,7 +29,7 @@ namespace itk * the sigmoid fuction. The resulting total transfrom is given by * * \f[ - * f(x) = (Max-Min) \cdot \frac{1}{\left(1+e^{-(\frac{ x - \beta }{\alpha}\right)}} + Min + * f(x) = (Max-Min) \cdot \frac{1} {\left( 1+e^{-\frac{ x - \beta }{\alpha}} \right)} + Min * \f] * * Every output pixel is equal to f(x). Where x is the intensity of the diff --git a/Utilities/ITK/Code/Common/itkKLMSegmentationRegion.h b/Utilities/ITK/Code/Common/itkKLMSegmentationRegion.h index 8af11f5e7207dd320aa53af4fa1a4a0e8f632af3..0ab1315b5aa10fd02c7f52f77099cdee137a796d 100644 --- a/Utilities/ITK/Code/Common/itkKLMSegmentationRegion.h +++ b/Utilities/ITK/Code/Common/itkKLMSegmentationRegion.h @@ -67,7 +67,7 @@ namespace itk * \end{tabular}\f] * * Region borders are shown as ``E''. - * \f[\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} + * \f[\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|} * \hline * C & C & C & & C & C & C & & C & C & C \\ \hline * C & C & C & E & C & C & C & E & C & C & C \\ \hline diff --git a/Utilities/ITK/Code/Numerics/Statistics/itkLogLikelihoodGoodnessOfFitFunction.h b/Utilities/ITK/Code/Numerics/Statistics/itkLogLikelihoodGoodnessOfFitFunction.h index f05a862eaa5287a5a5c84e959f2f467aabb20eb5..ed078e9a8a3723699eb8ce02803138674a918ad6 100644 --- a/Utilities/ITK/Code/Numerics/Statistics/itkLogLikelihoodGoodnessOfFitFunction.h +++ b/Utilities/ITK/Code/Numerics/Statistics/itkLogLikelihoodGoodnessOfFitFunction.h @@ -31,7 +31,7 @@ namespace Statistics{ * The statistics is * \f$ \sum^{k}_{i=1}x_{i}\log(x_{i}/n\pi_{0i}\f$ * - * where \f$ x_{i] \f$ is the observed frequency of the \f$i\f$th bin, and + * where \f$ x_{i} \f$ is the observed frequency of the \f$i\f$th bin, and * \f$n\pi_{0i}\f$ is the expected frequency. * *