From 1ade55b50efc9f64b2fd44c42a324cd4b05b24b6 Mon Sep 17 00:00:00 2001 From: Julien Malik <julien.malik@c-s.fr> Date: Thu, 14 Oct 2010 13:12:14 +0200 Subject: [PATCH] ENH: update libsvm to version 3.0 --- Code/Learning/otbSVMModel.txx | 8 +- ...leKernelFunctorImageClassificationTest.cxx | 1 - ...leKernelFunctorImageModelEstimatorTest.cxx | 1 - Utilities/otbsvm/CMakeLists.txt | 18 +- Utilities/otbsvm/svm.cpp | 3790 +++++++++++++++++ Utilities/otbsvm/svm.cxx | 3788 ---------------- Utilities/otbsvm/svm.h | 425 +- 7 files changed, 4025 insertions(+), 4006 deletions(-) create mode 100644 Utilities/otbsvm/svm.cpp delete mode 100644 Utilities/otbsvm/svm.cxx diff --git a/Code/Learning/otbSVMModel.txx b/Code/Learning/otbSVMModel.txx index 6c70c282f7..18dc0e4c23 100644 --- a/Code/Learning/otbSVMModel.txx +++ b/Code/Learning/otbSVMModel.txx @@ -111,12 +111,10 @@ template <class TValue, class TLabel> void SVMModel<TValue, TLabel>::DeleteModel() { - if (m_Model) - { - svm_destroy_model(m_Model); - m_Model = NULL; - } + svm_free_and_destroy_model(&m_Model); + m_Model = NULL; } + template <class TValue, class TLabel> void SVMModel<TValue, TLabel>::DeleteProblem() diff --git a/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageClassificationTest.cxx b/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageClassificationTest.cxx index 0f06206df1..0de7effa0a 100644 --- a/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageClassificationTest.cxx +++ b/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageClassificationTest.cxx @@ -64,7 +64,6 @@ int otbSVMInverseCosSpectralAngleKernelFunctorImageClassificationTest(int argc, otb::InverseCosSAMKernelFunctor myKernel; myKernel.SetValue("Coef", 1.0); - myKernel.Update(); svmEstimator->SetKernelFunctor(&myKernel); svmEstimator->SetKernelType(GENERIC); diff --git a/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageModelEstimatorTest.cxx b/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageModelEstimatorTest.cxx index c63c5c4d99..2b353ecc18 100644 --- a/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageModelEstimatorTest.cxx +++ b/Testing/Code/Learning/otbSVMInverseCosSpectralAngleKernelFunctorImageModelEstimatorTest.cxx @@ -63,7 +63,6 @@ int otbSVMInverseCosSpectralAngleKernelFunctorImageModelEstimatorTest(int argc, otb::InverseCosSAMKernelFunctor myKernel; myKernel.SetValue("Coef", 1.0); - myKernel.Update(); svmEstimator->SetKernelFunctor(&myKernel); svmEstimator->SetKernelType(GENERIC); diff --git a/Utilities/otbsvm/CMakeLists.txt b/Utilities/otbsvm/CMakeLists.txt index d517b80355..62591f3e9c 100644 --- a/Utilities/otbsvm/CMakeLists.txt +++ b/Utilities/otbsvm/CMakeLists.txt @@ -8,25 +8,9 @@ PROJECT(OTBSVM) # source files for otbsvm SET(OTBSVM_SRCS -svm.cxx +svm.cpp ) -# Adjust the compiler flags to avoid problems with ossim code. -IF(CMAKE_COMPILER_IS_GNUCXX) - # Hide warnings in ossim code. - SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -w") - - # CMake versions before 2.4 did not put the source-file-specific flags - # after the directory-level flags. Remove optimization flags from the - # CMAKE_CXX_FLAGS* variables so they can be overridden. - IF("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" LESS 2.4) - FOREACH(c "" "_DEBUG" "_RELEASE" "_MINSIZEREL" "_RELWITHDEBINFO") - STRING(REGEX REPLACE - "-O[^ ]*( |$)" "" CMAKE_CXX_FLAGS${c} "${CMAKE_CXX_FLAGS${c}}") - ENDFOREACH(c) - ENDIF("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" LESS 2.4) -ENDIF(CMAKE_COMPILER_IS_GNUCXX) - ADD_LIBRARY(otbsvm ${OTBSVM_SRCS}) TARGET_LINK_LIBRARIES (otbsvm ITKCommon) IF(OTB_LIBRARY_PROPERTIES) diff --git a/Utilities/otbsvm/svm.cpp b/Utilities/otbsvm/svm.cpp new file mode 100644 index 0000000000..d566a9c964 --- /dev/null +++ b/Utilities/otbsvm/svm.cpp @@ -0,0 +1,3790 @@ +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <ctype.h> +#include <float.h> +#include <string.h> +#include <stdarg.h> +#include "svm.h" +int libsvm_version = LIBSVM_VERSION; +typedef float Qfloat; +typedef signed char schar; +#ifndef min +template <class T> static inline T min(T x,T y) { return (x<y)?x:y; } +#endif +#ifndef max +template <class T> static inline T max(T x,T y) { return (x>y)?x:y; } +#endif +template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; } +template <class S, class T> static inline void clone(T*& dst, S* src, int n) +{ + dst = new T[n]; + memcpy((void *)dst,(void *)src,sizeof(T)*n); +} +static inline double powi(double base, int times) +{ + double tmp = base, ret = 1.0; + + for(int t=times; t>0; t/=2) + { + if(t%2==1) ret*=tmp; + tmp = tmp * tmp; + } + return ret; +} +#define INF HUGE_VAL +#define TAU 1e-12 +#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) + +static void print_string_stdout(const char *s) +{ + fputs(s,stdout); + fflush(stdout); +} +static void (*svm_print_string) (const char *) = &print_string_stdout; +#if 1 +static void info(const char *fmt,...) +{ + char buf[BUFSIZ]; + va_list ap; + va_start(ap,fmt); + vsprintf(buf,fmt,ap); + va_end(ap); + (*svm_print_string)(buf); +} +#else +static void info(const char *fmt,...) {} +#endif + +// +// Kernel Cache +// +// l is the number of total data items +// size is the cache size limit in bytes +// +class Cache +{ +public: + Cache(int l,long int size); + ~Cache(); + + // request data [0,len) + // return some position p where [p,len) need to be filled + // (p >= len if nothing needs to be filled) + int get_data(const int index, Qfloat **data, int len); + void swap_index(int i, int j); +private: + int l; + long int size; + struct head_t + { + head_t *prev, *next; // a circular list + Qfloat *data; + int len; // data[0,len) is cached in this entry + }; + + head_t *head; + head_t lru_head; + void lru_delete(head_t *h); + void lru_insert(head_t *h); +}; + +Cache::Cache(int l_,long int size_):l(l_),size(size_) +{ + head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 + size /= sizeof(Qfloat); + size -= l * sizeof(head_t) / sizeof(Qfloat); + size = max(size, 2 * (long int) l); // cache must be large enough for two columns + lru_head.next = lru_head.prev = &lru_head; +} + +Cache::~Cache() +{ + for(head_t *h = lru_head.next; h != &lru_head; h=h->next) + free(h->data); + free(head); +} + +void Cache::lru_delete(head_t *h) +{ + // delete from current location + h->prev->next = h->next; + h->next->prev = h->prev; +} + +void Cache::lru_insert(head_t *h) +{ + // insert to last position + h->next = &lru_head; + h->prev = lru_head.prev; + h->prev->next = h; + h->next->prev = h; +} + +int Cache::get_data(const int index, Qfloat **data, int len) +{ + head_t *h = &head[index]; + if(h->len) lru_delete(h); + int more = len - h->len; + + if(more > 0) + { + // free old space + while(size < more) + { + head_t *old = lru_head.next; + lru_delete(old); + free(old->data); + size += old->len; + old->data = 0; + old->len = 0; + } + + // allocate new space + h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); + size -= more; + swap(h->len,len); + } + + lru_insert(h); + *data = h->data; + return len; +} + +void Cache::swap_index(int i, int j) +{ + if(i==j) return; + + if(head[i].len) lru_delete(&head[i]); + if(head[j].len) lru_delete(&head[j]); + swap(head[i].data,head[j].data); + swap(head[i].len,head[j].len); + if(head[i].len) lru_insert(&head[i]); + if(head[j].len) lru_insert(&head[j]); + + if(i>j) swap(i,j); + for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) + { + if(h->len > i) + { + if(h->len > j) + swap(h->data[i],h->data[j]); + else + { + // give up + lru_delete(h); + free(h->data); + size += h->len; + h->data = 0; + h->len = 0; + } + } + } +} + +// +// Kernel evaluation +// +// the static method k_function is for doing single kernel evaluation +// the constructor of Kernel prepares to calculate the l*l kernel matrix +// the member function get_Q is for getting one column from the Q Matrix +// +class QMatrix { +public: + virtual Qfloat *get_Q(int column, int len) const = 0; + virtual double *get_QD() const = 0; + virtual void swap_index(int i, int j) const = 0; + virtual ~QMatrix() {} +}; + +class Kernel: public QMatrix { +public: + Kernel(int l, svm_node * const * x, const svm_parameter& param); + virtual ~Kernel(); + + static double k_function(const svm_node *x, const svm_node *y, + const svm_parameter& param); + virtual Qfloat *get_Q(int column, int len) const = 0; + virtual double *get_QD() const = 0; + virtual void swap_index(int i, int j) const // no so const... + { + swap(x[i],x[j]); + if(x_square) swap(x_square[i],x_square[j]); + } +protected: + + /*** Begin OTB modification ***/ + //double (Kernel::*kernel_function)(int i, int j) const; + double (Kernel::*kernel_function)(int i, int j, const svm_parameter& param) const; + const svm_parameter& m_param; + /*** End OTB modification ***/ + +private: + const svm_node **x; + double *x_square; + + // svm_parameter + const int kernel_type; + const int degree; + const double gamma; + const double coef0; + + static double dot(const svm_node *px, const svm_node *py); + + /*** OTB modification : add svm_parameter to the list of parameters ***/ + double kernel_linear(int i, int j, const svm_parameter& param) const + { + return dot(x[i],x[j]); + } + double kernel_poly(int i, int j, const svm_parameter& param) const + { + return powi(gamma*dot(x[i],x[j])+coef0,degree); + } + double kernel_rbf(int i, int j, const svm_parameter& param) const + { + return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); + } + double kernel_sigmoid(int i, int j, const svm_parameter& param) const + { + return tanh(gamma*dot(x[i],x[j])+coef0); + } + double kernel_precomputed(int i, int j, const svm_parameter& param) const + { + return x[i][(int)(x[j][0].value)].value; + } + + /*** Begin OTB modification ***/ + double kernel_generic(int i, int j, const svm_parameter& param) const + { + if( param.kernel_generic == NULL ) + { + itkGenericExceptionMacro( << "Generic Kernel is not initialized !"); + } + return (*param.kernel_generic)(x[i],x[j],param); + } + + double kernel_composed(int i, int j, const svm_parameter& param) const + { + if( param.kernel_composed == NULL ) + { + itkGenericExceptionMacro( << "Generic Kernel is not initialized !"); + } + return (*param.kernel_composed)(x[i],x[j],param); + } + /*** End OTB modification ***/ +}; + +Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) +:kernel_type(param.kernel_type), degree(param.degree), + gamma(param.gamma), coef0(param.coef0) +/*** Begin OTB modification ***/ +, m_param(param) +/*** End OTB modification ***/ +{ + switch(kernel_type) + { + case LINEAR: + kernel_function = &Kernel::kernel_linear; + break; + case POLY: + kernel_function = &Kernel::kernel_poly; + break; + case RBF: + kernel_function = &Kernel::kernel_rbf; + break; + case SIGMOID: + kernel_function = &Kernel::kernel_sigmoid; + break; + case PRECOMPUTED: + kernel_function = &Kernel::kernel_precomputed; + break; + /*** Begin OTB modification ***/ + case GENERIC: + kernel_function = &Kernel::kernel_generic; + break; + case COMPOSED: + kernel_function = &Kernel::kernel_composed; + break; + /*** End OTB modification ***/ + } + + clone(x,x_,l); + + if(kernel_type == RBF) + { + x_square = new double[l]; + for(int i=0;i<l;i++) + x_square[i] = dot(x[i],x[i]); + } + else + x_square = 0; +} + +Kernel::~Kernel() +{ + delete[] x; + delete[] x_square; +} + +double Kernel::dot(const svm_node *px, const svm_node *py) +{ + double sum = 0; + while(px->index != -1 && py->index != -1) + { + if(px->index == py->index) + { + sum += px->value * py->value; + ++px; + ++py; + } + else + { + if(px->index > py->index) + ++py; + else + ++px; + } + } + return sum; +} + +double Kernel::k_function(const svm_node *x, const svm_node *y, + const svm_parameter& param) +{ + switch(param.kernel_type) + { + case LINEAR: + return dot(x,y); + case POLY: + return powi(param.gamma*dot(x,y)+param.coef0,param.degree); + case RBF: + { + double sum = 0; + while(x->index != -1 && y->index !=-1) + { + if(x->index == y->index) + { + double d = x->value - y->value; + sum += d*d; + ++x; + ++y; + } + else + { + if(x->index > y->index) + { + sum += y->value * y->value; + ++y; + } + else + { + sum += x->value * x->value; + ++x; + } + } + } + + while(x->index != -1) + { + sum += x->value * x->value; + ++x; + } + + while(y->index != -1) + { + sum += y->value * y->value; + ++y; + } + + return exp(-param.gamma*sum); + } + case SIGMOID: + return tanh(param.gamma*dot(x,y)+param.coef0); + case PRECOMPUTED: //x: test (validation), y: SV + return x[(int)(y->value)].value; + + /*** Begin OTB modification ***/ + case GENERIC: + return ((*param.kernel_generic)(x,y,param)); + case COMPOSED: + return ((*param.kernel_composed)(x,y,param)); + /*** End OTB modification ***/ + + default: + return 0; // Unreachable + } +} + +// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 +// Solves: +// +// min 0.5(\alpha^T Q \alpha) + p^T \alpha +// +// y^T \alpha = \delta +// y_i = +1 or -1 +// 0 <= alpha_i <= Cp for y_i = 1 +// 0 <= alpha_i <= Cn for y_i = -1 +// +// Given: +// +// Q, p, y, Cp, Cn, and an initial feasible point \alpha +// l is the size of vectors and matrices +// eps is the stopping tolerance +// +// solution will be put in \alpha, objective value will be put in obj +// +class Solver { +public: + Solver() {}; + virtual ~Solver() {}; + + struct SolutionInfo { + double obj; + double rho; + double upper_bound_p; + double upper_bound_n; + double r; // for Solver_NU + }; + + void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, + double *alpha_, double Cp, double Cn, double eps, + SolutionInfo* si, int shrinking); +protected: + int active_size; + schar *y; + double *G; // gradient of objective function + enum { LOWER_BOUND, UPPER_BOUND, FREE }; + char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE + double *alpha; + const QMatrix *Q; + const double *QD; + double eps; + double Cp,Cn; + double *p; + int *active_set; + double *G_bar; // gradient, if we treat free variables as 0 + int l; + bool unshrink; // XXX + + double get_C(int i) + { + return (y[i] > 0)? Cp : Cn; + } + void update_alpha_status(int i) + { + if(alpha[i] >= get_C(i)) + alpha_status[i] = UPPER_BOUND; + else if(alpha[i] <= 0) + alpha_status[i] = LOWER_BOUND; + else alpha_status[i] = FREE; + } + bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } + bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } + bool is_free(int i) { return alpha_status[i] == FREE; } + void swap_index(int i, int j); + void reconstruct_gradient(); + virtual int select_working_set(int &i, int &j); + virtual double calculate_rho(); + virtual void do_shrinking(); +private: + bool be_shrunk(int i, double Gmax1, double Gmax2); +}; + +void Solver::swap_index(int i, int j) +{ + Q->swap_index(i,j); + swap(y[i],y[j]); + swap(G[i],G[j]); + swap(alpha_status[i],alpha_status[j]); + swap(alpha[i],alpha[j]); + swap(p[i],p[j]); + swap(active_set[i],active_set[j]); + swap(G_bar[i],G_bar[j]); +} + +void Solver::reconstruct_gradient() +{ + // reconstruct inactive elements of G from G_bar and free variables + + if(active_size == l) return; + + int i,j; + int nr_free = 0; + + for(j=active_size;j<l;j++) + G[j] = G_bar[j] + p[j]; + + for(j=0;j<active_size;j++) + if(is_free(j)) + nr_free++; + + if(2*nr_free < active_size) + info("\nWarning: using -h 0 may be faster\n"); + + if (nr_free*l > 2*active_size*(l-active_size)) + { + for(i=active_size;i<l;i++) + { + const Qfloat *Q_i = Q->get_Q(i,active_size); + for(j=0;j<active_size;j++) + if(is_free(j)) + G[i] += alpha[j] * Q_i[j]; + } + } + else + { + for(i=0;i<active_size;i++) + if(is_free(i)) + { + const Qfloat *Q_i = Q->get_Q(i,l); + double alpha_i = alpha[i]; + for(j=active_size;j<l;j++) + G[j] += alpha_i * Q_i[j]; + } + } +} + +void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, + double *alpha_, double Cp, double Cn, double eps, + SolutionInfo* si, int shrinking) +{ + this->l = l; + this->Q = &Q; + QD=Q.get_QD(); + clone(p, p_,l); + clone(y, y_,l); + clone(alpha,alpha_,l); + this->Cp = Cp; + this->Cn = Cn; + this->eps = eps; + unshrink = false; + + // initialize alpha_status + { + alpha_status = new char[l]; + for(int i=0;i<l;i++) + update_alpha_status(i); + } + + // initialize active set (for shrinking) + { + active_set = new int[l]; + for(int i=0;i<l;i++) + active_set[i] = i; + active_size = l; + } + + // initialize gradient + { + G = new double[l]; + G_bar = new double[l]; + int i; + for(i=0;i<l;i++) + { + G[i] = p[i]; + G_bar[i] = 0; + } + for(i=0;i<l;i++) + if(!is_lower_bound(i)) + { + const Qfloat *Q_i = Q.get_Q(i,l); + double alpha_i = alpha[i]; + int j; + for(j=0;j<l;j++) + G[j] += alpha_i*Q_i[j]; + if(is_upper_bound(i)) + for(j=0;j<l;j++) + G_bar[j] += get_C(i) * Q_i[j]; + } + } + + // optimization step + + int iter = 0; + int counter = min(l,1000)+1; + + while(1) + { + // show progress and do shrinking + + if(--counter == 0) + { + counter = min(l,1000); + if(shrinking) do_shrinking(); + info("."); + } + + int i,j; + if(select_working_set(i,j)!=0) + { + // reconstruct the whole gradient + reconstruct_gradient(); + // reset active set size and check + active_size = l; + info("*"); + if(select_working_set(i,j)!=0) + break; + else + counter = 1; // do shrinking next iteration + } + + ++iter; + + // update alpha[i] and alpha[j], handle bounds carefully + + const Qfloat *Q_i = Q.get_Q(i,active_size); + const Qfloat *Q_j = Q.get_Q(j,active_size); + + double C_i = get_C(i); + double C_j = get_C(j); + + double old_alpha_i = alpha[i]; + double old_alpha_j = alpha[j]; + + if(y[i]!=y[j]) + { + double quad_coef = QD[i]+QD[j]+2*Q_i[j]; + if (quad_coef <= 0) + quad_coef = TAU; + double delta = (-G[i]-G[j])/quad_coef; + double diff = alpha[i] - alpha[j]; + alpha[i] += delta; + alpha[j] += delta; + + if(diff > 0) + { + if(alpha[j] < 0) + { + alpha[j] = 0; + alpha[i] = diff; + } + } + else + { + if(alpha[i] < 0) + { + alpha[i] = 0; + alpha[j] = -diff; + } + } + if(diff > C_i - C_j) + { + if(alpha[i] > C_i) + { + alpha[i] = C_i; + alpha[j] = C_i - diff; + } + } + else + { + if(alpha[j] > C_j) + { + alpha[j] = C_j; + alpha[i] = C_j + diff; + } + } + } + else + { + double quad_coef = QD[i]+QD[j]-2*Q_i[j]; + if (quad_coef <= 0) + quad_coef = TAU; + double delta = (G[i]-G[j])/quad_coef; + double sum = alpha[i] + alpha[j]; + alpha[i] -= delta; + alpha[j] += delta; + + if(sum > C_i) + { + if(alpha[i] > C_i) + { + alpha[i] = C_i; + alpha[j] = sum - C_i; + } + } + else + { + if(alpha[j] < 0) + { + alpha[j] = 0; + alpha[i] = sum; + } + } + if(sum > C_j) + { + if(alpha[j] > C_j) + { + alpha[j] = C_j; + alpha[i] = sum - C_j; + } + } + else + { + if(alpha[i] < 0) + { + alpha[i] = 0; + alpha[j] = sum; + } + } + } + + // update G + + double delta_alpha_i = alpha[i] - old_alpha_i; + double delta_alpha_j = alpha[j] - old_alpha_j; + + for(int k=0;k<active_size;k++) + { + G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; + } + + // update alpha_status and G_bar + + { + bool ui = is_upper_bound(i); + bool uj = is_upper_bound(j); + update_alpha_status(i); + update_alpha_status(j); + int k; + if(ui != is_upper_bound(i)) + { + Q_i = Q.get_Q(i,l); + if(ui) + for(k=0;k<l;k++) + G_bar[k] -= C_i * Q_i[k]; + else + for(k=0;k<l;k++) + G_bar[k] += C_i * Q_i[k]; + } + + if(uj != is_upper_bound(j)) + { + Q_j = Q.get_Q(j,l); + if(uj) + for(k=0;k<l;k++) + G_bar[k] -= C_j * Q_j[k]; + else + for(k=0;k<l;k++) + G_bar[k] += C_j * Q_j[k]; + } + } + } + + // calculate rho + + si->rho = calculate_rho(); + + // calculate objective value + { + double v = 0; + int i; + for(i=0;i<l;i++) + v += alpha[i] * (G[i] + p[i]); + + si->obj = v/2; + } + + // put back the solution + { + for(int i=0;i<l;i++) + alpha_[active_set[i]] = alpha[i]; + } + + // juggle everything back + /*{ + for(int i=0;i<l;i++) + while(active_set[i] != i) + swap_index(i,active_set[i]); + // or Q.swap_index(i,active_set[i]); + }*/ + + si->upper_bound_p = Cp; + si->upper_bound_n = Cn; + + info("\noptimization finished, #iter = %d\n",iter); + + delete[] p; + delete[] y; + delete[] alpha; + delete[] alpha_status; + delete[] active_set; + delete[] G; + delete[] G_bar; +} + +// return 1 if already optimal, return 0 otherwise +int Solver::select_working_set(int &out_i, int &out_j) +{ + // return i,j such that + // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) + // j: minimizes the decrease of obj value + // (if quadratic coefficeint <= 0, replace it with tau) + // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) + + double Gmax = -INF; + double Gmax2 = -INF; + int Gmax_idx = -1; + int Gmin_idx = -1; + double obj_diff_min = INF; + + for(int t=0;t<active_size;t++) + if(y[t]==+1) + { + if(!is_upper_bound(t)) + if(-G[t] >= Gmax) + { + Gmax = -G[t]; + Gmax_idx = t; + } + } + else + { + if(!is_lower_bound(t)) + if(G[t] >= Gmax) + { + Gmax = G[t]; + Gmax_idx = t; + } + } + + int i = Gmax_idx; + const Qfloat *Q_i = NULL; + if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 + Q_i = Q->get_Q(i,active_size); + + for(int j=0;j<active_size;j++) + { + if(y[j]==+1) + { + if (!is_lower_bound(j)) + { + double grad_diff=Gmax+G[j]; + if (G[j] >= Gmax2) + Gmax2 = G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + else + { + if (!is_upper_bound(j)) + { + double grad_diff= Gmax-G[j]; + if (-G[j] >= Gmax2) + Gmax2 = -G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + } + + if(Gmax+Gmax2 < eps) + return 1; + + out_i = Gmax_idx; + out_j = Gmin_idx; + return 0; +} + +bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) +{ + if(is_upper_bound(i)) + { + if(y[i]==+1) + return(-G[i] > Gmax1); + else + return(-G[i] > Gmax2); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + return(G[i] > Gmax2); + else + return(G[i] > Gmax1); + } + else + return(false); +} + +void Solver::do_shrinking() +{ + int i; + double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } + double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } + + // find maximal violating pair first + for(i=0;i<active_size;i++) + { + if(y[i]==+1) + { + if(!is_upper_bound(i)) + { + if(-G[i] >= Gmax1) + Gmax1 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(G[i] >= Gmax2) + Gmax2 = G[i]; + } + } + else + { + if(!is_upper_bound(i)) + { + if(-G[i] >= Gmax2) + Gmax2 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(G[i] >= Gmax1) + Gmax1 = G[i]; + } + } + } + + if(unshrink == false && Gmax1 + Gmax2 <= eps*10) + { + unshrink = true; + reconstruct_gradient(); + active_size = l; + info("*"); + } + + for(i=0;i<active_size;i++) + if (be_shrunk(i, Gmax1, Gmax2)) + { + active_size--; + while (active_size > i) + { + if (!be_shrunk(active_size, Gmax1, Gmax2)) + { + swap_index(i,active_size); + break; + } + active_size--; + } + } +} + +double Solver::calculate_rho() +{ + double r; + int nr_free = 0; + double ub = INF, lb = -INF, sum_free = 0; + for(int i=0;i<active_size;i++) + { + double yG = y[i]*G[i]; + + if(is_upper_bound(i)) + { + if(y[i]==-1) + ub = min(ub,yG); + else + lb = max(lb,yG); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + ub = min(ub,yG); + else + lb = max(lb,yG); + } + else + { + ++nr_free; + sum_free += yG; + } + } + + if(nr_free>0) + r = sum_free/nr_free; + else + r = (ub+lb)/2; + + return r; +} + +// +// Solver for nu-svm classification and regression +// +// additional constraint: e^T \alpha = constant +// +class Solver_NU : public Solver +{ +public: + Solver_NU() {} + void Solve(int l, const QMatrix& Q, const double *p, const schar *y, + double *alpha, double Cp, double Cn, double eps, + SolutionInfo* si, int shrinking) + { + this->si = si; + Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); + } +private: + SolutionInfo *si; + int select_working_set(int &i, int &j); + double calculate_rho(); + bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); + void do_shrinking(); +}; + +// return 1 if already optimal, return 0 otherwise +int Solver_NU::select_working_set(int &out_i, int &out_j) +{ + // return i,j such that y_i = y_j and + // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) + // j: minimizes the decrease of obj value + // (if quadratic coefficeint <= 0, replace it with tau) + // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) + + double Gmaxp = -INF; + double Gmaxp2 = -INF; + int Gmaxp_idx = -1; + + double Gmaxn = -INF; + double Gmaxn2 = -INF; + int Gmaxn_idx = -1; + + int Gmin_idx = -1; + double obj_diff_min = INF; + + for(int t=0;t<active_size;t++) + if(y[t]==+1) + { + if(!is_upper_bound(t)) + if(-G[t] >= Gmaxp) + { + Gmaxp = -G[t]; + Gmaxp_idx = t; + } + } + else + { + if(!is_lower_bound(t)) + if(G[t] >= Gmaxn) + { + Gmaxn = G[t]; + Gmaxn_idx = t; + } + } + + int ip = Gmaxp_idx; + int in = Gmaxn_idx; + const Qfloat *Q_ip = NULL; + const Qfloat *Q_in = NULL; + if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 + Q_ip = Q->get_Q(ip,active_size); + if(in != -1) + Q_in = Q->get_Q(in,active_size); + + for(int j=0;j<active_size;j++) + { + if(y[j]==+1) + { + if (!is_lower_bound(j)) + { + double grad_diff=Gmaxp+G[j]; + if (G[j] >= Gmaxp2) + Gmaxp2 = G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + else + { + if (!is_upper_bound(j)) + { + double grad_diff=Gmaxn-G[j]; + if (-G[j] >= Gmaxn2) + Gmaxn2 = -G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[in]+QD[j]-2*Q_in[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + } + + if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) + return 1; + + if (y[Gmin_idx] == +1) + out_i = Gmaxp_idx; + else + out_i = Gmaxn_idx; + out_j = Gmin_idx; + + return 0; +} + +bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) +{ + if(is_upper_bound(i)) + { + if(y[i]==+1) + return(-G[i] > Gmax1); + else + return(-G[i] > Gmax4); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + return(G[i] > Gmax2); + else + return(G[i] > Gmax3); + } + else + return(false); +} + +void Solver_NU::do_shrinking() +{ + double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } + double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } + double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } + double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } + + // find maximal violating pair first + int i; + for(i=0;i<active_size;i++) + { + if(!is_upper_bound(i)) + { + if(y[i]==+1) + { + if(-G[i] > Gmax1) Gmax1 = -G[i]; + } + else if(-G[i] > Gmax4) Gmax4 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(y[i]==+1) + { + if(G[i] > Gmax2) Gmax2 = G[i]; + } + else if(G[i] > Gmax3) Gmax3 = G[i]; + } + } + + if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) + { + unshrink = true; + reconstruct_gradient(); + active_size = l; + } + + for(i=0;i<active_size;i++) + if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) + { + active_size--; + while (active_size > i) + { + if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) + { + swap_index(i,active_size); + break; + } + active_size--; + } + } +} + +double Solver_NU::calculate_rho() +{ + int nr_free1 = 0,nr_free2 = 0; + double ub1 = INF, ub2 = INF; + double lb1 = -INF, lb2 = -INF; + double sum_free1 = 0, sum_free2 = 0; + + for(int i=0;i<active_size;i++) + { + if(y[i]==+1) + { + if(is_upper_bound(i)) + lb1 = max(lb1,G[i]); + else if(is_lower_bound(i)) + ub1 = min(ub1,G[i]); + else + { + ++nr_free1; + sum_free1 += G[i]; + } + } + else + { + if(is_upper_bound(i)) + lb2 = max(lb2,G[i]); + else if(is_lower_bound(i)) + ub2 = min(ub2,G[i]); + else + { + ++nr_free2; + sum_free2 += G[i]; + } + } + } + + double r1,r2; + if(nr_free1 > 0) + r1 = sum_free1/nr_free1; + else + r1 = (ub1+lb1)/2; + + if(nr_free2 > 0) + r2 = sum_free2/nr_free2; + else + r2 = (ub2+lb2)/2; + + si->r = (r1+r2)/2; + return (r1-r2)/2; +} + +// +// Q matrices for various formulations +// +class SVC_Q: public Kernel +{ +public: + SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) + :Kernel(prob.l, prob.x, param) + { + clone(y,y_,prob.l); + cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); + QD = new double[prob.l]; + for(int i=0;i<prob.l;i++) + /*** Begin OTB modification ***/ + QD[i] = (this->*kernel_function)(i,i,m_param); + /*** End OTB modification ***/ + } + + Qfloat *get_Q(int i, int len) const + { + Qfloat *data; + int start, j; + if((start = cache->get_data(i,&data,len)) < len) + { + for(j=start;j<len;j++) + /*** Begin OTB modification ***/ + data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j,m_param)); + /*** End OTB modification ***/ + } + return data; + } + + double *get_QD() const + { + return QD; + } + + void swap_index(int i, int j) const + { + cache->swap_index(i,j); + Kernel::swap_index(i,j); + swap(y[i],y[j]); + swap(QD[i],QD[j]); + } + + ~SVC_Q() + { + delete[] y; + delete cache; + delete[] QD; + } +private: + schar *y; + Cache *cache; + double *QD; +}; + +class ONE_CLASS_Q: public Kernel +{ +public: + ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) + :Kernel(prob.l, prob.x, param) + { + cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); + QD = new double[prob.l]; + for(int i=0;i<prob.l;i++) + /*** Begin OTB modification ***/ + QD[i] = (this->*kernel_function)(i,i,m_param); + /*** End OTB modification ***/ + } + + Qfloat *get_Q(int i, int len) const + { + Qfloat *data; + int start, j; + if((start = cache->get_data(i,&data,len)) < len) + { + for(j=start;j<len;j++) + /*** Begin OTB modification ***/ + data[j] = (Qfloat)(this->*kernel_function)(i,j,m_param); + /*** End OTB modification ***/ + } + return data; + } + + double *get_QD() const + { + return QD; + } + + void swap_index(int i, int j) const + { + cache->swap_index(i,j); + Kernel::swap_index(i,j); + swap(QD[i],QD[j]); + } + + ~ONE_CLASS_Q() + { + delete cache; + delete[] QD; + } +private: + Cache *cache; + double *QD; +}; + +class SVR_Q: public Kernel +{ +public: + SVR_Q(const svm_problem& prob, const svm_parameter& param) + :Kernel(prob.l, prob.x, param) + { + l = prob.l; + cache = new Cache(l,(long int)(param.cache_size*(1<<20))); + QD = new double[2*l]; + sign = new schar[2*l]; + index = new int[2*l]; + for(int k=0;k<l;k++) + { + sign[k] = 1; + sign[k+l] = -1; + index[k] = k; + index[k+l] = k; + /*** Begin OTB modification ***/ + QD[k] = (this->*kernel_function)(k,k,m_param); + /*** End OTB modification ***/ + QD[k+l] = QD[k]; + } + buffer[0] = new Qfloat[2*l]; + buffer[1] = new Qfloat[2*l]; + next_buffer = 0; + } + + void swap_index(int i, int j) const + { + swap(sign[i],sign[j]); + swap(index[i],index[j]); + swap(QD[i],QD[j]); + } + + Qfloat *get_Q(int i, int len) const + { + Qfloat *data; + int j, real_i = index[i]; + if(cache->get_data(real_i,&data,l) < l) + { + for(j=0;j<l;j++) + /*** Begin OTB modification ***/ + data[j] = (Qfloat)(this->*kernel_function)(real_i,j,m_param); + /*** End OTB modification ***/ + } + + // reorder and copy + Qfloat *buf = buffer[next_buffer]; + next_buffer = 1 - next_buffer; + schar si = sign[i]; + for(j=0;j<len;j++) + buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]]; + return buf; + } + + double *get_QD() const + { + return QD; + } + + ~SVR_Q() + { + delete cache; + delete[] sign; + delete[] index; + delete[] buffer[0]; + delete[] buffer[1]; + delete[] QD; + } +private: + int l; + Cache *cache; + schar *sign; + int *index; + mutable int next_buffer; + Qfloat *buffer[2]; + double *QD; +}; + +// +// construct and solve various formulations +// +static void solve_c_svc( + const svm_problem *prob, const svm_parameter* param, + double *alpha, Solver::SolutionInfo* si, double Cp, double Cn) +{ + int l = prob->l; + double *minus_ones = new double[l]; + schar *y = new schar[l]; + + int i; + + for(i=0;i<l;i++) + { + alpha[i] = 0; + minus_ones[i] = -1; + if(prob->y[i] > 0) y[i] = +1; else y[i] = -1; + } + + Solver s; + s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, + alpha, Cp, Cn, param->eps, si, param->shrinking); + + double sum_alpha=0; + for(i=0;i<l;i++) + sum_alpha += alpha[i]; + + if (Cp==Cn) + info("nu = %f\n", sum_alpha/(Cp*prob->l)); + + for(i=0;i<l;i++) + alpha[i] *= y[i]; + + delete[] minus_ones; + delete[] y; +} + +static void solve_nu_svc( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int i; + int l = prob->l; + double nu = param->nu; + + schar *y = new schar[l]; + + for(i=0;i<l;i++) + if(prob->y[i]>0) + y[i] = +1; + else + y[i] = -1; + + double sum_pos = nu*l/2; + double sum_neg = nu*l/2; + + for(i=0;i<l;i++) + if(y[i] == +1) + { + alpha[i] = min(1.0,sum_pos); + sum_pos -= alpha[i]; + } + else + { + alpha[i] = min(1.0,sum_neg); + sum_neg -= alpha[i]; + } + + double *zeros = new double[l]; + + for(i=0;i<l;i++) + zeros[i] = 0; + + Solver_NU s; + s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, + alpha, 1.0, 1.0, param->eps, si, param->shrinking); + double r = si->r; + + info("C = %f\n",1/r); + + for(i=0;i<l;i++) + alpha[i] *= y[i]/r; + + si->rho /= r; + si->obj /= (r*r); + si->upper_bound_p = 1/r; + si->upper_bound_n = 1/r; + + delete[] y; + delete[] zeros; +} + +static void solve_one_class( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int l = prob->l; + double *zeros = new double[l]; + schar *ones = new schar[l]; + int i; + + int n = (int)(param->nu*prob->l); // # of alpha's at upper bound + + for(i=0;i<n;i++) + alpha[i] = 1; + if(n<prob->l) + alpha[n] = param->nu * prob->l - n; + for(i=n+1;i<l;i++) + alpha[i] = 0; + + for(i=0;i<l;i++) + { + zeros[i] = 0; + ones[i] = 1; + } + + Solver s; + s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, + alpha, 1.0, 1.0, param->eps, si, param->shrinking); + + delete[] zeros; + delete[] ones; +} + +static void solve_epsilon_svr( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int l = prob->l; + double *alpha2 = new double[2*l]; + double *linear_term = new double[2*l]; + schar *y = new schar[2*l]; + int i; + + for(i=0;i<l;i++) + { + alpha2[i] = 0; + linear_term[i] = param->p - prob->y[i]; + y[i] = 1; + + alpha2[i+l] = 0; + linear_term[i+l] = param->p + prob->y[i]; + y[i+l] = -1; + } + + Solver s; + s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, + alpha2, param->C, param->C, param->eps, si, param->shrinking); + + double sum_alpha = 0; + for(i=0;i<l;i++) + { + alpha[i] = alpha2[i] - alpha2[i+l]; + sum_alpha += fabs(alpha[i]); + } + info("nu = %f\n",sum_alpha/(param->C*l)); + + delete[] alpha2; + delete[] linear_term; + delete[] y; +} + +static void solve_nu_svr( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int l = prob->l; + double C = param->C; + double *alpha2 = new double[2*l]; + double *linear_term = new double[2*l]; + schar *y = new schar[2*l]; + int i; + + double sum = C * param->nu * l / 2; + for(i=0;i<l;i++) + { + alpha2[i] = alpha2[i+l] = min(sum,C); + sum -= alpha2[i]; + + linear_term[i] = - prob->y[i]; + y[i] = 1; + + linear_term[i+l] = prob->y[i]; + y[i+l] = -1; + } + + Solver_NU s; + s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, + alpha2, C, C, param->eps, si, param->shrinking); + + info("epsilon = %f\n",-si->r); + + for(i=0;i<l;i++) + alpha[i] = alpha2[i] - alpha2[i+l]; + + delete[] alpha2; + delete[] linear_term; + delete[] y; +} + +// +// decision_function +// +struct decision_function +{ + double *alpha; + double rho; +}; + +static decision_function svm_train_one( + const svm_problem *prob, const svm_parameter *param, + double Cp, double Cn) +{ + double *alpha = Malloc(double,prob->l); + Solver::SolutionInfo si; + switch(param->svm_type) + { + case C_SVC: + solve_c_svc(prob,param,alpha,&si,Cp,Cn); + break; + case NU_SVC: + solve_nu_svc(prob,param,alpha,&si); + break; + case ONE_CLASS: + solve_one_class(prob,param,alpha,&si); + break; + case EPSILON_SVR: + solve_epsilon_svr(prob,param,alpha,&si); + break; + case NU_SVR: + solve_nu_svr(prob,param,alpha,&si); + break; + } + + info("obj = %f, rho = %f\n",si.obj,si.rho); + + // output SVs + + int nSV = 0; + int nBSV = 0; + for(int i=0;i<prob->l;i++) + { + if(fabs(alpha[i]) > 0) + { + ++nSV; + if(prob->y[i] > 0) + { + if(fabs(alpha[i]) >= si.upper_bound_p) + ++nBSV; + } + else + { + if(fabs(alpha[i]) >= si.upper_bound_n) + ++nBSV; + } + } + } + + info("nSV = %d, nBSV = %d\n",nSV,nBSV); + + decision_function f; + f.alpha = alpha; + f.rho = si.rho; + return f; +} + +// Platt's binary SVM Probablistic Output: an improvement from Lin et al. +static void sigmoid_train( + int l, const double *dec_values, const double *labels, + double& A, double& B) +{ + double prior1=0, prior0 = 0; + int i; + + for (i=0;i<l;i++) + if (labels[i] > 0) prior1+=1; + else prior0+=1; + + int max_iter=100; // Maximal number of iterations + double min_step=1e-10; // Minimal step taken in line search + double sigma=1e-12; // For numerically strict PD of Hessian + double eps=1e-5; + double hiTarget=(prior1+1.0)/(prior1+2.0); + double loTarget=1/(prior0+2.0); + double *t=Malloc(double,l); + double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; + double newA,newB,newf,d1,d2; + int iter; + + // Initial Point and Initial Fun Value + A=0.0; B=log((prior0+1.0)/(prior1+1.0)); + double fval = 0.0; + + for (i=0;i<l;i++) + { + if (labels[i]>0) t[i]=hiTarget; + else t[i]=loTarget; + fApB = dec_values[i]*A+B; + if (fApB>=0) + fval += t[i]*fApB + log(1+exp(-fApB)); + else + fval += (t[i] - 1)*fApB +log(1+exp(fApB)); + } + for (iter=0;iter<max_iter;iter++) + { + // Update Gradient and Hessian (use H' = H + sigma I) + h11=sigma; // numerically ensures strict PD + h22=sigma; + h21=0.0;g1=0.0;g2=0.0; + for (i=0;i<l;i++) + { + fApB = dec_values[i]*A+B; + if (fApB >= 0) + { + p=exp(-fApB)/(1.0+exp(-fApB)); + q=1.0/(1.0+exp(-fApB)); + } + else + { + p=1.0/(1.0+exp(fApB)); + q=exp(fApB)/(1.0+exp(fApB)); + } + d2=p*q; + h11+=dec_values[i]*dec_values[i]*d2; + h22+=d2; + h21+=dec_values[i]*d2; + d1=t[i]-p; + g1+=dec_values[i]*d1; + g2+=d1; + } + + // Stopping Criteria + if (fabs(g1)<eps && fabs(g2)<eps) + break; + + // Finding Newton direction: -inv(H') * g + det=h11*h22-h21*h21; + dA=-(h22*g1 - h21 * g2) / det; + dB=-(-h21*g1+ h11 * g2) / det; + gd=g1*dA+g2*dB; + + + stepsize = 1; // Line Search + while (stepsize >= min_step) + { + newA = A + stepsize * dA; + newB = B + stepsize * dB; + + // New function value + newf = 0.0; + for (i=0;i<l;i++) + { + fApB = dec_values[i]*newA+newB; + if (fApB >= 0) + newf += t[i]*fApB + log(1+exp(-fApB)); + else + newf += (t[i] - 1)*fApB +log(1+exp(fApB)); + } + // Check sufficient decrease + if (newf<fval+0.0001*stepsize*gd) + { + A=newA;B=newB;fval=newf; + break; + } + else + stepsize = stepsize / 2.0; + } + + if (stepsize < min_step) + { + info("Line search fails in two-class probability estimates\n"); + break; + } + } + + if (iter>=max_iter) + info("Reaching maximal iterations in two-class probability estimates\n"); + free(t); +} + +static double sigmoid_predict(double decision_value, double A, double B) +{ + double fApB = decision_value*A+B; + if (fApB >= 0) + return exp(-fApB)/(1.0+exp(-fApB)); + else + return 1.0/(1+exp(fApB)) ; +} + +// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng +static void multiclass_probability(int k, double **r, double *p) +{ + int t,j; + int iter = 0, max_iter=max(100,k); + double **Q=Malloc(double *,k); + double *Qp=Malloc(double,k); + double pQp, eps=0.005/k; + + for (t=0;t<k;t++) + { + p[t]=1.0/k; // Valid if k = 1 + Q[t]=Malloc(double,k); + Q[t][t]=0; + for (j=0;j<t;j++) + { + Q[t][t]+=r[j][t]*r[j][t]; + Q[t][j]=Q[j][t]; + } + for (j=t+1;j<k;j++) + { + Q[t][t]+=r[j][t]*r[j][t]; + Q[t][j]=-r[j][t]*r[t][j]; + } + } + for (iter=0;iter<max_iter;iter++) + { + // stopping condition, recalculate QP,pQP for numerical accuracy + pQp=0; + for (t=0;t<k;t++) + { + Qp[t]=0; + for (j=0;j<k;j++) + Qp[t]+=Q[t][j]*p[j]; + pQp+=p[t]*Qp[t]; + } + double max_error=0; + for (t=0;t<k;t++) + { + double error=fabs(Qp[t]-pQp); + if (error>max_error) + max_error=error; + } + if (max_error<eps) break; + + for (t=0;t<k;t++) + { + double diff=(-Qp[t]+pQp)/Q[t][t]; + p[t]+=diff; + pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); + for (j=0;j<k;j++) + { + Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); + p[j]/=(1+diff); + } + } + } + if (iter>=max_iter) + info("Exceeds max_iter in multiclass_prob\n"); + for(t=0;t<k;t++) free(Q[t]); + free(Q); + free(Qp); +} + +// Cross-validation decision values for probability estimates +static void svm_binary_svc_probability( + const svm_problem *prob, const svm_parameter *param, + double Cp, double Cn, double& probA, double& probB) +{ + int i; + int nr_fold = 5; + int *perm = Malloc(int,prob->l); + double *dec_values = Malloc(double,prob->l); + + // random shuffle + for(i=0;i<prob->l;i++) perm[i]=i; + for(i=0;i<prob->l;i++) + { + int j = i+rand()%(prob->l-i); + swap(perm[i],perm[j]); + } + for(i=0;i<nr_fold;i++) + { + int begin = i*prob->l/nr_fold; + int end = (i+1)*prob->l/nr_fold; + int j,k; + struct svm_problem subprob; + + subprob.l = prob->l-(end-begin); + subprob.x = Malloc(struct svm_node*,subprob.l); + subprob.y = Malloc(double,subprob.l); + + k=0; + for(j=0;j<begin;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + for(j=end;j<prob->l;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + int p_count=0,n_count=0; + for(j=0;j<k;j++) + if(subprob.y[j]>0) + p_count++; + else + n_count++; + + if(p_count==0 && n_count==0) + for(j=begin;j<end;j++) + dec_values[perm[j]] = 0; + else if(p_count > 0 && n_count == 0) + for(j=begin;j<end;j++) + dec_values[perm[j]] = 1; + else if(p_count == 0 && n_count > 0) + for(j=begin;j<end;j++) + dec_values[perm[j]] = -1; + else + { + svm_parameter subparam = *param; + subparam.probability=0; + subparam.C=1.0; + subparam.nr_weight=2; + subparam.weight_label = Malloc(int,2); + subparam.weight = Malloc(double,2); + subparam.weight_label[0]=+1; + subparam.weight_label[1]=-1; + subparam.weight[0]=Cp; + subparam.weight[1]=Cn; + struct svm_model *submodel = svm_train(&subprob,&subparam); + for(j=begin;j<end;j++) + { + svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); + // ensure +1 -1 order; reason not using CV subroutine + dec_values[perm[j]] *= submodel->label[0]; + } + svm_free_and_destroy_model(&submodel); + svm_destroy_param(&subparam); + } + free(subprob.x); + free(subprob.y); + } + sigmoid_train(prob->l,dec_values,prob->y,probA,probB); + free(dec_values); + free(perm); +} + +// Return parameter of a Laplace distribution +static double svm_svr_probability( + const svm_problem *prob, const svm_parameter *param) +{ + int i; + int nr_fold = 5; + double *ymv = Malloc(double,prob->l); + double mae = 0; + + svm_parameter newparam = *param; + newparam.probability = 0; + svm_cross_validation(prob,&newparam,nr_fold,ymv); + for(i=0;i<prob->l;i++) + { + ymv[i]=prob->y[i]-ymv[i]; + mae += fabs(ymv[i]); + } + mae /= prob->l; + double std=sqrt(2*mae*mae); + int count=0; + mae=0; + for(i=0;i<prob->l;i++) + if (fabs(ymv[i]) > 5*std) + count=count+1; + else + mae+=fabs(ymv[i]); + mae /= (prob->l-count); + info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); + free(ymv); + return mae; +} + + +// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data +// perm, length l, must be allocated before calling this subroutine +static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) +{ + int l = prob->l; + int max_nr_class = 16; + int nr_class = 0; + int *label = Malloc(int,max_nr_class); + int *count = Malloc(int,max_nr_class); + int *data_label = Malloc(int,l); + int i; + + for(i=0;i<l;i++) + { + int this_label = (int)prob->y[i]; + int j; + for(j=0;j<nr_class;j++) + { + if(this_label == label[j]) + { + ++count[j]; + break; + } + } + data_label[i] = j; + if(j == nr_class) + { + if(nr_class == max_nr_class) + { + max_nr_class *= 2; + label = (int *)realloc(label,max_nr_class*sizeof(int)); + count = (int *)realloc(count,max_nr_class*sizeof(int)); + } + label[nr_class] = this_label; + count[nr_class] = 1; + ++nr_class; + } + } + + int *start = Malloc(int,nr_class); + start[0] = 0; + for(i=1;i<nr_class;i++) + start[i] = start[i-1]+count[i-1]; + for(i=0;i<l;i++) + { + perm[start[data_label[i]]] = i; + ++start[data_label[i]]; + } + start[0] = 0; + for(i=1;i<nr_class;i++) + start[i] = start[i-1]+count[i-1]; + + *nr_class_ret = nr_class; + *label_ret = label; + *start_ret = start; + *count_ret = count; + free(data_label); +} + +// +// Interface functions +// +svm_model *svm_train(const svm_problem *prob, const svm_parameter *param) +{ + svm_model *model = Malloc(svm_model,1); + model->param = *param; + model->free_sv = 0; // XXX + + if(param->svm_type == ONE_CLASS || + param->svm_type == EPSILON_SVR || + param->svm_type == NU_SVR) + { + // regression or one-class-svm + model->nr_class = 2; + model->label = NULL; + model->nSV = NULL; + model->probA = NULL; model->probB = NULL; + model->sv_coef = Malloc(double *,1); + + if(param->probability && + (param->svm_type == EPSILON_SVR || + param->svm_type == NU_SVR)) + { + model->probA = Malloc(double,1); + model->probA[0] = svm_svr_probability(prob,param); + } + + decision_function f = svm_train_one(prob,param,0,0); + model->rho = Malloc(double,1); + model->rho[0] = f.rho; + + int nSV = 0; + int i; + for(i=0;i<prob->l;i++) + if(fabs(f.alpha[i]) > 0) ++nSV; + model->l = nSV; + model->SV = Malloc(svm_node *,nSV); + model->sv_coef[0] = Malloc(double,nSV); + int j = 0; + for(i=0;i<prob->l;i++) + if(fabs(f.alpha[i]) > 0) + { + model->SV[j] = prob->x[i]; + model->sv_coef[0][j] = f.alpha[i]; + ++j; + } + + free(f.alpha); + } + else + { + // classification + int l = prob->l; + int nr_class; + int *label = NULL; + int *start = NULL; + int *count = NULL; + int *perm = Malloc(int,l); + + // group training data of the same class + svm_group_classes(prob,&nr_class,&label,&start,&count,perm); + svm_node **x = Malloc(svm_node *,l); + int i; + for(i=0;i<l;i++) + x[i] = prob->x[perm[i]]; + + // calculate weighted C + + double *weighted_C = Malloc(double, nr_class); + for(i=0;i<nr_class;i++) + weighted_C[i] = param->C; + for(i=0;i<param->nr_weight;i++) + { + int j; + for(j=0;j<nr_class;j++) + if(param->weight_label[i] == label[j]) + break; + if(j == nr_class) + fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); + else + weighted_C[j] *= param->weight[i]; + } + + // train k*(k-1)/2 models + + bool *nonzero = Malloc(bool,l); + for(i=0;i<l;i++) + nonzero[i] = false; + decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); + + double *probA=NULL,*probB=NULL; + if (param->probability) + { + probA=Malloc(double,nr_class*(nr_class-1)/2); + probB=Malloc(double,nr_class*(nr_class-1)/2); + } + + int p = 0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + svm_problem sub_prob; + int si = start[i], sj = start[j]; + int ci = count[i], cj = count[j]; + sub_prob.l = ci+cj; + sub_prob.x = Malloc(svm_node *,sub_prob.l); + sub_prob.y = Malloc(double,sub_prob.l); + int k; + for(k=0;k<ci;k++) + { + sub_prob.x[k] = x[si+k]; + sub_prob.y[k] = +1; + } + for(k=0;k<cj;k++) + { + sub_prob.x[ci+k] = x[sj+k]; + sub_prob.y[ci+k] = -1; + } + + if(param->probability) + svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); + + f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); + for(k=0;k<ci;k++) + if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) + nonzero[si+k] = true; + for(k=0;k<cj;k++) + if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) + nonzero[sj+k] = true; + free(sub_prob.x); + free(sub_prob.y); + ++p; + } + + // build output + + model->nr_class = nr_class; + + model->label = Malloc(int,nr_class); + for(i=0;i<nr_class;i++) + model->label[i] = label[i]; + + model->rho = Malloc(double,nr_class*(nr_class-1)/2); + for(i=0;i<nr_class*(nr_class-1)/2;i++) + model->rho[i] = f[i].rho; + + if(param->probability) + { + model->probA = Malloc(double,nr_class*(nr_class-1)/2); + model->probB = Malloc(double,nr_class*(nr_class-1)/2); + for(i=0;i<nr_class*(nr_class-1)/2;i++) + { + model->probA[i] = probA[i]; + model->probB[i] = probB[i]; + } + } + else + { + model->probA=NULL; + model->probB=NULL; + } + + int total_sv = 0; + int *nz_count = Malloc(int,nr_class); + model->nSV = Malloc(int,nr_class); + for(i=0;i<nr_class;i++) + { + int nSV = 0; + for(int j=0;j<count[i];j++) + if(nonzero[start[i]+j]) + { + ++nSV; + ++total_sv; + } + model->nSV[i] = nSV; + nz_count[i] = nSV; + } + + info("Total nSV = %d\n",total_sv); + + model->l = total_sv; + model->SV = Malloc(svm_node *,total_sv); + p = 0; + for(i=0;i<l;i++) + if(nonzero[i]) model->SV[p++] = x[i]; + + int *nz_start = Malloc(int,nr_class); + nz_start[0] = 0; + for(i=1;i<nr_class;i++) + nz_start[i] = nz_start[i-1]+nz_count[i-1]; + + model->sv_coef = Malloc(double *,nr_class-1); + for(i=0;i<nr_class-1;i++) + model->sv_coef[i] = Malloc(double,total_sv); + + p = 0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + // classifier (i,j): coefficients with + // i are in sv_coef[j-1][nz_start[i]...], + // j are in sv_coef[i][nz_start[j]...] + + int si = start[i]; + int sj = start[j]; + int ci = count[i]; + int cj = count[j]; + + int q = nz_start[i]; + int k; + for(k=0;k<ci;k++) + if(nonzero[si+k]) + model->sv_coef[j-1][q++] = f[p].alpha[k]; + q = nz_start[j]; + for(k=0;k<cj;k++) + if(nonzero[sj+k]) + model->sv_coef[i][q++] = f[p].alpha[ci+k]; + ++p; + } + + free(label); + free(probA); + free(probB); + free(count); + free(perm); + free(start); + free(x); + free(weighted_C); + free(nonzero); + for(i=0;i<nr_class*(nr_class-1)/2;i++) + free(f[i].alpha); + free(f); + free(nz_count); + free(nz_start); + } + return model; +} + +// Stratified cross validation +void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target) +{ + int i; + int *fold_start = Malloc(int,nr_fold+1); + int l = prob->l; + int *perm = Malloc(int,l); + int nr_class; + + // stratified cv may not give leave-one-out rate + // Each class to l folds -> some folds may have zero elements + if((param->svm_type == C_SVC || + param->svm_type == NU_SVC) && nr_fold < l) + { + int *start = NULL; + int *label = NULL; + int *count = NULL; + svm_group_classes(prob,&nr_class,&label,&start,&count,perm); + + // random shuffle and then data grouped by fold using the array perm + int *fold_count = Malloc(int,nr_fold); + int c; + int *index = Malloc(int,l); + for(i=0;i<l;i++) + index[i]=perm[i]; + for (c=0; c<nr_class; c++) + for(i=0;i<count[c];i++) + { + int j = i+rand()%(count[c]-i); + swap(index[start[c]+j],index[start[c]+i]); + } + for(i=0;i<nr_fold;i++) + { + fold_count[i] = 0; + for (c=0; c<nr_class;c++) + fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; + } + fold_start[0]=0; + for (i=1;i<=nr_fold;i++) + fold_start[i] = fold_start[i-1]+fold_count[i-1]; + for (c=0; c<nr_class;c++) + for(i=0;i<nr_fold;i++) + { + int begin = start[c]+i*count[c]/nr_fold; + int end = start[c]+(i+1)*count[c]/nr_fold; + for(int j=begin;j<end;j++) + { + perm[fold_start[i]] = index[j]; + fold_start[i]++; + } + } + fold_start[0]=0; + for (i=1;i<=nr_fold;i++) + fold_start[i] = fold_start[i-1]+fold_count[i-1]; + free(start); + free(label); + free(count); + free(index); + free(fold_count); + } + else + { + for(i=0;i<l;i++) perm[i]=i; + for(i=0;i<l;i++) + { + int j = i+rand()%(l-i); + swap(perm[i],perm[j]); + } + for(i=0;i<=nr_fold;i++) + fold_start[i]=i*l/nr_fold; + } + + for(i=0;i<nr_fold;i++) + { + int begin = fold_start[i]; + int end = fold_start[i+1]; + int j,k; + struct svm_problem subprob; + + subprob.l = l-(end-begin); + subprob.x = Malloc(struct svm_node*,subprob.l); + subprob.y = Malloc(double,subprob.l); + + k=0; + for(j=0;j<begin;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + for(j=end;j<l;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + struct svm_model *submodel = svm_train(&subprob,param); + if(param->probability && + (param->svm_type == C_SVC || param->svm_type == NU_SVC)) + { + double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); + for(j=begin;j<end;j++) + target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates); + free(prob_estimates); + } + else + for(j=begin;j<end;j++) + target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]); + svm_free_and_destroy_model(&submodel); + free(subprob.x); + free(subprob.y); + } + free(fold_start); + free(perm); +} + + +int svm_get_svm_type(const svm_model *model) +{ + return model->param.svm_type; +} + +int svm_get_nr_class(const svm_model *model) +{ + return model->nr_class; +} + +void svm_get_labels(const svm_model *model, int* label) +{ + if (model->label != NULL) + for(int i=0;i<model->nr_class;i++) + label[i] = model->label[i]; +} + +double svm_get_svr_probability(const svm_model *model) +{ + if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && + model->probA!=NULL) + return model->probA[0]; + else + { + fprintf(stderr,"Model doesn't contain information for SVR probability inference\n"); + return 0; + } +} + +double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) +{ + if(model->param.svm_type == ONE_CLASS || + model->param.svm_type == EPSILON_SVR || + model->param.svm_type == NU_SVR) + { + double *sv_coef = model->sv_coef[0]; + double sum = 0; + for(int i=0;i<model->l;i++) + sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); + sum -= model->rho[0]; + *dec_values = sum; + + if(model->param.svm_type == ONE_CLASS) + return (sum>0)?1:-1; + else + return sum; + } + else + { + int i; + int nr_class = model->nr_class; + int l = model->l; + + double *kvalue = Malloc(double,l); + for(i=0;i<l;i++) + kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); + + int *start = Malloc(int,nr_class); + start[0] = 0; + for(i=1;i<nr_class;i++) + start[i] = start[i-1]+model->nSV[i-1]; + + int *vote = Malloc(int,nr_class); + for(i=0;i<nr_class;i++) + vote[i] = 0; + + int p=0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + double sum = 0; + int si = start[i]; + int sj = start[j]; + int ci = model->nSV[i]; + int cj = model->nSV[j]; + + int k; + double *coef1 = model->sv_coef[j-1]; + double *coef2 = model->sv_coef[i]; + for(k=0;k<ci;k++) + sum += coef1[si+k] * kvalue[si+k]; + for(k=0;k<cj;k++) + sum += coef2[sj+k] * kvalue[sj+k]; + sum -= model->rho[p]; + dec_values[p] = sum; + + if(dec_values[p] > 0) + ++vote[i]; + else + ++vote[j]; + p++; + } + + int vote_max_idx = 0; + for(i=1;i<nr_class;i++) + if(vote[i] > vote[vote_max_idx]) + vote_max_idx = i; + + free(kvalue); + free(start); + free(vote); + return model->label[vote_max_idx]; + } +} + +double svm_predict(const svm_model *model, const svm_node *x) +{ + int nr_class = model->nr_class; + double *dec_values; + if(model->param.svm_type == ONE_CLASS || + model->param.svm_type == EPSILON_SVR || + model->param.svm_type == NU_SVR) + dec_values = Malloc(double, 1); + else + dec_values = Malloc(double, nr_class*(nr_class-1)/2); + double pred_result = svm_predict_values(model, x, dec_values); + free(dec_values); + return pred_result; +} + +double svm_predict_probability( + const svm_model *model, const svm_node *x, double *prob_estimates) +{ + if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && + model->probA!=NULL && model->probB!=NULL) + { + int i; + int nr_class = model->nr_class; + double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); + svm_predict_values(model, x, dec_values); + + double min_prob=1e-7; + double **pairwise_prob=Malloc(double *,nr_class); + for(i=0;i<nr_class;i++) + pairwise_prob[i]=Malloc(double,nr_class); + int k=0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); + pairwise_prob[j][i]=1-pairwise_prob[i][j]; + k++; + } + multiclass_probability(nr_class,pairwise_prob,prob_estimates); + + int prob_max_idx = 0; + for(i=1;i<nr_class;i++) + if(prob_estimates[i] > prob_estimates[prob_max_idx]) + prob_max_idx = i; + for(i=0;i<nr_class;i++) + free(pairwise_prob[i]); + free(dec_values); + free(pairwise_prob); + return model->label[prob_max_idx]; + } + else + return svm_predict(model, x); +} + +static const char *svm_type_table[] = +{ + "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL +}; + +static const char *kernel_type_table[]= +{ + /*** Begin OTB modification ***/ + "linear","polynomial","rbf","sigmoid","precomputed","generic","composed",NULL + /*** End OTB modification ***/ +}; + +int svm_save_model(const char *model_file_name, const svm_model *model) +{ + FILE *fp = fopen(model_file_name,"w"); + if(fp==NULL) return -1; + + const svm_parameter& param = model->param; + + fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); + fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); + + /*** Begin OTB modification ***/ + if( param.kernel_type == GENERIC ) + { + if( param.kernel_generic == NULL ) + { + fprintf(stderr,"generic kernel functor is not initialized\n"); + return -1; + } + + //Load generic parameters + int cr = param.kernel_generic->save_parameters(&fp,"generic_kernel_parameters"); + if( cr != 0 ) + { + fprintf(stderr,"error while saving generic kernel parameters to the file %s.\n",model_file_name); + } + } + if (param.kernel_type == COMPOSED) + { + if (param.kernel_composed == NULL) + { + fprintf(stderr, "composed kernel functor is not initialized\n"); + return -1; + } + //Load generic parameters + int cr = param.kernel_composed->save_parameters(&fp, "composed_kernel_parameters"); + if (cr != 0) + { + fprintf(stderr, "error while saving composed kernel parameters to the file %s.\n", model_file_name); + } + } + /*** End OTB modification ***/ + + if(param.kernel_type == POLY) + fprintf(fp,"degree %d\n", param.degree); + + if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) + fprintf(fp,"gamma %g\n", param.gamma); + + if(param.kernel_type == POLY || param.kernel_type == SIGMOID) + fprintf(fp,"coef0 %g\n", param.coef0); + + int nr_class = model->nr_class; + int l = model->l; + fprintf(fp, "nr_class %d\n", nr_class); + fprintf(fp, "total_sv %d\n",l); + + { + fprintf(fp, "rho"); + for(int i=0;i<nr_class*(nr_class-1)/2;i++) + fprintf(fp," %g",model->rho[i]); + fprintf(fp, "\n"); + } + + if(model->label) + { + fprintf(fp, "label"); + for(int i=0;i<nr_class;i++) + fprintf(fp," %d",model->label[i]); + fprintf(fp, "\n"); + } + + if(model->probA) // regression has probA only + { + fprintf(fp, "probA"); + for(int i=0;i<nr_class*(nr_class-1)/2;i++) + fprintf(fp," %g",model->probA[i]); + fprintf(fp, "\n"); + } + if(model->probB) + { + fprintf(fp, "probB"); + for(int i=0;i<nr_class*(nr_class-1)/2;i++) + fprintf(fp," %g",model->probB[i]); + fprintf(fp, "\n"); + } + + if(model->nSV) + { + fprintf(fp, "nr_sv"); + for(int i=0;i<nr_class;i++) + fprintf(fp," %d",model->nSV[i]); + fprintf(fp, "\n"); + } + + fprintf(fp, "SV\n"); + const double * const *sv_coef = model->sv_coef; + const svm_node * const *SV = model->SV; + + for(int i=0;i<l;i++) + { + for(int j=0;j<nr_class-1;j++) + fprintf(fp, "%.16g ",sv_coef[j][i]); + + const svm_node *p = SV[i]; + + if(param.kernel_type == PRECOMPUTED) + fprintf(fp,"0:%d ",(int)(p->value)); + else + while(p->index != -1) + { + fprintf(fp,"%d:%.8g ",p->index,p->value); + p++; + } + fprintf(fp, "\n"); + } + if (ferror(fp) != 0 || fclose(fp) != 0) return -1; + else return 0; +} + +static char *line = NULL; +static int max_line_len; + +static char* readline(FILE *input) +{ + int len; + + if(fgets(line,max_line_len,input) == NULL) + return NULL; + + while(strrchr(line,'\n') == NULL) + { + max_line_len *= 2; + line = (char *) realloc(line,max_line_len); + len = (int) strlen(line); + if(fgets(line+len,max_line_len-len,input) == NULL) + break; + } + return line; +} + +svm_model *svm_load_model(const char *model_file_name, GenericKernelFunctorBase* generic_kernel_functor) +{ + FILE *fp = fopen(model_file_name,"rb"); + if(fp==NULL) return NULL; + + // read parameters + + svm_model *model = Malloc(svm_model,1); + svm_parameter& param = model->param; + model->rho = NULL; + model->probA = NULL; + model->probB = NULL; + model->label = NULL; + model->nSV = NULL; + + char cmd[81]; + while(1) + { + fscanf(fp,"%80s",cmd); + + if(strcmp(cmd,"svm_type")==0) + { + fscanf(fp,"%80s",cmd); + int i; + for(i=0;svm_type_table[i];i++) + { + if(strcmp(svm_type_table[i],cmd)==0) + { + param.svm_type=i; + break; + } + } + if(svm_type_table[i] == NULL) + { + fprintf(stderr,"unknown svm type.\n"); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + else if(strcmp(cmd,"kernel_type")==0) + { + fscanf(fp,"%80s",cmd); + int i; + for(i=0;kernel_type_table[i];i++) + { + if(strcmp(kernel_type_table[i],cmd)==0) + { + param.kernel_type=i; + break; + } + } + if(kernel_type_table[i] == NULL) + { + fprintf(stderr,"unknown kernel function.\n"); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + else if(strcmp(cmd,"degree")==0) + fscanf(fp,"%d",¶m.degree); + else if(strcmp(cmd,"gamma")==0) + fscanf(fp,"%lf",¶m.gamma); + else if(strcmp(cmd,"coef0")==0) + fscanf(fp,"%lf",¶m.coef0); + else if(strcmp(cmd,"nr_class")==0) + fscanf(fp,"%d",&model->nr_class); + else if(strcmp(cmd,"total_sv")==0) + fscanf(fp,"%d",&model->l); + else if(strcmp(cmd,"rho")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->rho = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->rho[i]); + } + else if(strcmp(cmd,"label")==0) + { + int n = model->nr_class; + model->label = Malloc(int,n); + for(int i=0;i<n;i++) + fscanf(fp,"%d",&model->label[i]); + } + else if(strcmp(cmd,"probA")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->probA = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->probA[i]); + } + else if(strcmp(cmd,"probB")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->probB = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->probB[i]); + } + else if(strcmp(cmd,"nr_sv")==0) + { + int n = model->nr_class; + model->nSV = Malloc(int,n); + for(int i=0;i<n;i++) + fscanf(fp,"%d",&model->nSV[i]); + } + else if(strcmp(cmd,"SV")==0) + { + while(1) + { + int c = getc(fp); + if(c==EOF || c=='\n') break; + } + break; + } + /*** Begin OTB modification ***/ + else if (strcmp(cmd, "generic_kernel_parameters") == 0) + { + if (param.kernel_type == GENERIC) + { + if (generic_kernel_functor == NULL) + { + fprintf(stderr, "generic kernel functor is not initialized\n", cmd); + return NULL; + } + param.kernel_generic = generic_kernel_functor; + //Load generic parameters + int cr = param.kernel_generic->load_parameters(&fp); + if (cr != 0) + { + fprintf(stderr, "error while loading generic kernel parameters from the file %s.\n", model_file_name); + } + } + else + { + //Read the generic_kernel_parameters line + fgets(cmd, 80, fp); + } + + } + else if (strcmp(cmd, "composed_kernel_parameters") == 0) + { + if (param.kernel_type == COMPOSED) + { + //Load generic parameters + delete generic_kernel_functor; + + param.kernel_composed = new ComposedKernelFunctor; + int cr = param.kernel_composed->load_parameters(&fp); + model->delete_composed = true; + //int cr = param.kernel_generic->load_parameters(&fp); + if (cr != 0) + { + fprintf(stderr, "error while loading composed kernel parameters from the file %s.\n", model_file_name); + } + } + } + /*** End OTB modification ***/ + else + { + fprintf(stderr,"unknown text in model file: [%s]\n",cmd); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + + // read sv_coef and SV + + int elements = 0; + long pos = ftell(fp); + + max_line_len = 1024; + line = Malloc(char,max_line_len); + char *p,*endptr,*idx,*val; + + while(readline(fp)!=NULL) + { + p = strtok(line,":"); + while(1) + { + p = strtok(NULL,":"); + if(p == NULL) + break; + ++elements; + } + } + elements += model->l; + + fseek(fp,pos,SEEK_SET); + + int m = model->nr_class - 1; + int l = model->l; + model->sv_coef = Malloc(double *,m); + int i; + for(i=0;i<m;i++) + model->sv_coef[i] = Malloc(double,l); + model->SV = Malloc(svm_node*,l); + svm_node *x_space = NULL; + if(l>0) x_space = Malloc(svm_node,elements); + + int j=0; + for(i=0;i<l;i++) + { + readline(fp); + model->SV[i] = &x_space[j]; + + p = strtok(line, " \t"); + model->sv_coef[0][i] = strtod(p,&endptr); + for(int k=1;k<m;k++) + { + p = strtok(NULL, " \t"); + model->sv_coef[k][i] = strtod(p,&endptr); + } + + while(1) + { + idx = strtok(NULL, ":"); + val = strtok(NULL, " \t"); + + if(val == NULL) + break; + x_space[j].index = (int) strtol(idx,&endptr,10); + x_space[j].value = strtod(val,&endptr); + + ++j; + } + x_space[j++].index = -1; + } + free(line); + + if (ferror(fp) != 0 || fclose(fp) != 0) + return NULL; + + model->free_sv = 1; // XXX + return model; +} + +/*** Begin OTB modification ***/ +svm_model *svm_copy_model( const svm_model *model ) +{ + const svm_parameter& param = model->param; + + // instanciated the copy + svm_model *modelCpy = Malloc(svm_model,1); + svm_parameter& paramCpy = modelCpy->param; + modelCpy->rho = NULL; + modelCpy->probA = NULL; + modelCpy->probB = NULL; + modelCpy->label = NULL; + modelCpy->nSV = NULL; + modelCpy->delete_composed = false; + + // SVM type copy + paramCpy.svm_type = param.svm_type; + // Kernel type copy + paramCpy.kernel_type = param.kernel_type; + // Param copy + paramCpy.degree = param.degree; + paramCpy.gamma = param.gamma; + paramCpy.coef0 = param.coef0; + // Model variable + int nr_class = model->nr_class; + int l = model->l; + + modelCpy->nr_class = nr_class; + modelCpy->l = l; + if (model->rho) + { + int n = model->nr_class * (model->nr_class - 1) / 2; + modelCpy->rho = Malloc(double,n); + for (int i = 0; i < n; i++) + modelCpy->rho[i] = model->rho[i]; + } + if (model->label) + { + modelCpy->label = Malloc(int,nr_class); + for (int i = 0; i < nr_class; i++) + modelCpy->label[i] = model->label[i]; + } + if (model->probA) + { + int n = nr_class * (nr_class - 1) / 2; + modelCpy->probA = Malloc(double,n); + for (int i = 0; i < n; i++) + modelCpy->probA[i] = model->probA[i]; + } + if (model->probB) + { + int n = nr_class * (nr_class - 1) / 2; + modelCpy->probB = Malloc(double,n); + for (int i = 0; i < n; i++) + modelCpy->probB[i] = model->probB[i]; + } + if (model->nSV) + { + modelCpy->nSV = Malloc(int,nr_class); + for (int i = 0; i < nr_class; i++) + modelCpy->nSV[i] = model->nSV[i]; + } + + // SV copy + const double * const *sv_coef = model->sv_coef; + const svm_node * const *SV = model->SV; + + modelCpy->SV = Malloc(svm_node*,l); + svm_node **SVCpy = modelCpy->SV; + + modelCpy->sv_coef = Malloc(double *,nr_class-1); + + for (int i = 0; i < nr_class - 1; i++) + modelCpy->sv_coef[i] = Malloc(double,l); + + // Compute the total number of SV elements. + unsigned int elements = 0; + for (int p = 0; p < l; p++) + { + const svm_node *tempNode = SV[p]; + while (tempNode->index != -1) + { + tempNode++; + elements++; + } + elements++;// for -1 values + } + + if (l > 0) + { + modelCpy->SV[0] = Malloc(svm_node,elements); + memcpy(modelCpy->SV[0], model->SV[0], sizeof(svm_node*) * elements); + } + svm_node *x_space = modelCpy->SV[0]; + + int j = 0; + for (int i = 0; i < l; i++) + { + // sv_coef + for (int k = 0; k < nr_class - 1; k++) + modelCpy->sv_coef[k][i] = sv_coef[k][i]; + + // SV + modelCpy->SV[i] = &x_space[j]; + const svm_node *p = SV[i]; + svm_node *pCpy = SVCpy[i]; + while (p->index != -1) + { + pCpy->index = p->index; + pCpy->value = p->value; + p++; + pCpy++; + j++; + } + pCpy->index = -1; + j++; + } + + // Generic kernel copy + if (param.kernel_type == GENERIC) + { + paramCpy.kernel_generic = Malloc(GenericKernelFunctorBase, sizeof(*(param.kernel_generic))); + memcpy(paramCpy.kernel_generic, param.kernel_generic, sizeof(*(param.kernel_generic))); + } + // Composrd kernel copy + if (param.kernel_type == COMPOSED) + { + paramCpy.kernel_composed = Malloc(ComposedKernelFunctor, 1); + *(paramCpy.kernel_composed) = *(param.kernel_composed); + } + + return modelCpy; +} +/*** End OTB modification ***/ + + + +void svm_free_model_content(svm_model* model_ptr) +{ + if(model_ptr->free_sv && model_ptr->l > 0) + free((void *)(model_ptr->SV[0])); + for(int i=0;i<model_ptr->nr_class-1;i++) + free(model_ptr->sv_coef[i]); + free(model_ptr->SV); + free(model_ptr->sv_coef); + free(model_ptr->rho); + free(model_ptr->label); + free(model_ptr->probA); + free(model_ptr->probB); + free(model_ptr->nSV); +} + +void svm_free_and_destroy_model(svm_model** model_ptr_ptr) +{ + svm_model* model_ptr = *model_ptr_ptr; + if(model_ptr != NULL) + { + svm_free_model_content(model_ptr); + free(model_ptr); + } +} + +void svm_destroy_model(svm_model* model_ptr) +{ + fprintf(stderr,"warning: svm_destroy_model is deprecated and should not be used. Please use svm_free_and_destroy_model(svm_model **model_ptr_ptr)\n"); + svm_free_and_destroy_model(&model_ptr); +} + +void svm_destroy_param(svm_parameter* param) +{ + free(param->weight_label); + free(param->weight); +} + +const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) +{ + // svm_type + + int svm_type = param->svm_type; + if(svm_type != C_SVC && + svm_type != NU_SVC && + svm_type != ONE_CLASS && + svm_type != EPSILON_SVR && + svm_type != NU_SVR) + return "unknown svm type"; + + // kernel_type, degree + + int kernel_type = param->kernel_type; + if(kernel_type != LINEAR && + kernel_type != POLY && + kernel_type != RBF && + kernel_type != SIGMOID && + kernel_type != PRECOMPUTED + /*** Begin OTB modification ***/ + && kernel_type != GENERIC + && kernel_type != COMPOSED + /*** End OTB modification ***/ + ) + return "unknown kernel type"; + + if(param->gamma < 0) + return "gamma < 0"; + + if(param->degree < 0) + return "degree of polynomial kernel < 0"; + + // cache_size,eps,C,nu,p,shrinking + + if(param->cache_size <= 0) + return "cache_size <= 0"; + + if(param->eps <= 0) + return "eps <= 0"; + + if(svm_type == C_SVC || + svm_type == EPSILON_SVR || + svm_type == NU_SVR) + if(param->C <= 0) + return "C <= 0"; + + if(svm_type == NU_SVC || + svm_type == ONE_CLASS || + svm_type == NU_SVR) + if(param->nu <= 0 || param->nu > 1) + return "nu <= 0 or nu > 1"; + + if(svm_type == EPSILON_SVR) + if(param->p < 0) + return "p < 0"; + + if(param->shrinking != 0 && + param->shrinking != 1) + return "shrinking != 0 and shrinking != 1"; + + if(param->probability != 0 && + param->probability != 1) + return "probability != 0 and probability != 1"; + + if(param->probability == 1 && + svm_type == ONE_CLASS) + return "one-class SVM probability output not supported yet"; + + + // check whether nu-svc is feasible + + if(svm_type == NU_SVC) + { + int l = prob->l; + int max_nr_class = 16; + int nr_class = 0; + int *label = Malloc(int,max_nr_class); + int *count = Malloc(int,max_nr_class); + + int i; + for(i=0;i<l;i++) + { + int this_label = (int)prob->y[i]; + int j; + for(j=0;j<nr_class;j++) + if(this_label == label[j]) + { + ++count[j]; + break; + } + if(j == nr_class) + { + if(nr_class == max_nr_class) + { + max_nr_class *= 2; + label = (int *)realloc(label,max_nr_class*sizeof(int)); + count = (int *)realloc(count,max_nr_class*sizeof(int)); + } + label[nr_class] = this_label; + count[nr_class] = 1; + ++nr_class; + } + } + + for(i=0;i<nr_class;i++) + { + int n1 = count[i]; + for(int j=i+1;j<nr_class;j++) + { + int n2 = count[j]; + if(param->nu*(n1+n2)/2 > min(n1,n2)) + { + free(label); + free(count); + return "specified nu is infeasible"; + } + } + } + free(label); + free(count); + } + + return NULL; +} + +int svm_check_probability_model(const svm_model *model) +{ + return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && + model->probA!=NULL && model->probB!=NULL) || + ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && + model->probA!=NULL); +} + +void svm_set_print_string_function(void (*print_func)(const char *)) +{ + if(print_func == NULL) + svm_print_string = &print_string_stdout; + else + svm_print_string = print_func; +} + +/*** Begin OTB modification ***/ + +GenericKernelFunctorBase::GenericKernelFunctorBase(const GenericKernelFunctorBase& copy) +{ + *this = copy; +} + +GenericKernelFunctorBase& +GenericKernelFunctorBase::operator=(const GenericKernelFunctorBase& copy) +{ + this->m_MapParameters = copy.m_MapParameters; + this->m_Name = copy.m_Name; + return *this; +} + +int +GenericKernelFunctorBase:: +load_parameters(FILE ** pfile) +{ + int NbParams(0); + char keyword[81]; + char value[81]; + // Read functor name + fscanf(*pfile,"%80s",keyword); + m_Name = std::string(keyword); + // Read number of parameters + fscanf(*pfile,"%d",&NbParams); + // if( NbParams == 0 ) return -1; + for ( int cpt=0 ; cpt < NbParams ; cpt++) + { + fscanf(*pfile,"%80s",keyword); + fscanf(*pfile,"%80s",value); + m_MapParameters[std::string(keyword)] = std::string(value); + } + return 0; +} +int +GenericKernelFunctorBase:: +save_parameters(FILE ** pfile, const char * generic_kernel_parameters_keyword)const +{ + MapConstIterator iter=m_MapParameters.begin(); + + std::string line(generic_kernel_parameters_keyword); + std::string strNbParams; + ::otb::StringStream flux; + flux << m_MapParameters.size(); + flux >> strNbParams; + line = line + " " + m_Name + " " + strNbParams; + + // DON'T USE ITER because for a COPY ONLY, whereas map.size() IS GOOD, map.end() + // doesn't give the good answer -> SEGFAULT + // while( iter != m_MapParameters.end() ) + // { + // line = line + " " + iter->first + " " + iter->second; + // ++iter; + // } + for ( unsigned int i = 0; i<m_MapParameters.size(); i++) + { + line = line + " " + iter->first + " " + iter->second; + ++iter; + } + fprintf(*pfile,"%s\n", line.c_str()); + return 0; +} + +void +GenericKernelFunctorBase:: +print_parameters(void)const +{ + MapConstIterator iter=this->GetMapParameters().begin(); + + std::cout << "Print generic kernel parameters: "<<this->GetMapParameters().size()<<std::endl; + while( iter != this->GetMapParameters().end() ) + { + std::cout << " "<<iter->first <<" "<<iter->second<<std::endl; + ++iter; + } +} + +double +GenericKernelFunctorBase:: +dot(const svm_node *px, const svm_node *py)const +{ + double sum = 0.; + + while(px->index != -1 && py->index != -1) + { + if(px->index == py->index) + { + sum += px->value * py->value; + ++px; + ++py; + } + else + { + if(px->index > py->index) + ++py; + else + ++px; + } + } + return sum; +} + +svm_node * +GenericKernelFunctorBase:: +sub(const svm_node *px, const svm_node *py) const + /* compute the difference a-b of two sparse vectors */ + /* Note: SVECTOR lists are not followed, but only the first + SVECTOR is used */ +{ + long veclength = 1; + + const svm_node * pxbis = px; + const svm_node * pybis = py; + + while (px->index != -1 && py->index != -1) + { + ++veclength; + if(px->index == py->index) + { + ++px; + ++py; + } + else + { + if (px->index < py->index) + { + ++px; + } + else + { + ++py; + } + } + } + + while (py->index != -1) + { + ++veclength; + ++py; + } + while (px->index != -1) + { + ++veclength; + ++px; + } + + svm_node *vec; + vec = new svm_node[veclength]; + unsigned long int vecIt = 0; + + px = pxbis; + py = pybis; + + while (px->index != -1 && py->index != -1) + { + if(px->index == py->index) + { + (vec[vecIt])=(*px); + vec[vecIt].value-=py->value; + + if(vec[vecIt].value != 0) + { + ++vecIt; + } + ++px; + ++py; + + } + else + { + if(px->index > py->index) + { + (vec[vecIt])=(*py); + vec[vecIt].value*=(-1); + ++vecIt; + ++py; + } + else + { + (vec[vecIt])=(*px); + ++vecIt; + ++px; + } + } + } + + while (py->index != -1) + { + (vec[vecIt])=(*py); + vec[vecIt].value*=(-1); + ++vecIt; + ++py; + } + while (px->index != -1) + { + (vec[vecIt])=(*px); + ++vecIt; + ++px; + } + return(vec); +} + + +svm_node * +GenericKernelFunctorBase:: +add(const svm_node *px, const svm_node *py) const + /* compute the sum a+b of two sparse vectors */ + /* Note: SVECTOR lists are not followed, but only the first + SVECTOR is used */ +{ + const svm_node * pxbis = px; + const svm_node * pybis = py; + long veclength = 1; + + while (px->index != -1 && py->index != -1) + { + ++veclength; + if(px->index == py->index) + { + ++px; + ++py; + } + else + { + if (px->index < py->index) + { + ++px; + } + else + { + ++py; + } + } + } + + while (py->index != -1) + { + ++veclength; + ++py; + } + while (px->index != -1) + { + ++veclength; + ++px; + } + + svm_node *vec; + vec = new svm_node[veclength]; + unsigned long int vecIt = 0; + + px = pxbis; + py = pybis; + + while (px->index != -1 && py->index != -1) + { + if(px->index == py->index) + { + (vec[vecIt])=(*px); + vec[vecIt].value+=py->value; + if(vec[vecIt].value != 0) + { + ++vecIt; + } + ++px; + ++py; + } + else + { + if (px->index < py->index) + { + (vec[vecIt])=(*px); + ++vecIt; + ++px; + } + else + { + (vec[vecIt])=(*py); + ++vecIt; + ++py; + + } + } + } + while (py->index != -1) + { + (vec[vecIt])=(*py); + ++vecIt; + ++py; + } + while (px->index != -1) + { + (vec[vecIt])=(*px); + ++vecIt; + ++px; + } + + return(vec); +} + +// **************************************************************************************** +// ************************ ComposedKernelFunctor methods ********************/ +// **************************************************************************************** + +ComposedKernelFunctor::ComposedKernelFunctor(const ComposedKernelFunctor& copy) +{ + *this = copy; +} + +ComposedKernelFunctor& +ComposedKernelFunctor::operator=(const ComposedKernelFunctor& copy) +{ + // Call Superclass::operator= + static_cast<Superclass&>(*this) = static_cast<const Superclass&>(copy); + + // Copy Self attributes + this->m_KernelFunctorList = copy.m_KernelFunctorList; + this->m_HaveToBeDeletedList = copy.m_HaveToBeDeletedList; + this->m_PonderationList = copy.m_PonderationList; + return *this; +} + +void +ComposedKernelFunctor +::print_parameters(void)const +{ + MapConstIterator iter = this->GetMapParameters().begin(); + std::cout << "Print composed kernel parameters: "<<this->GetName()<<", "<<this->GetMapParameters().size()<<std::endl; + while( iter != this->GetMapParameters().end() ) + { + std::cout << " "<<iter->first <<" "<<iter->second<<std::endl; + ++iter; + } + std::cout<<std::endl; + std::cout<<"Composition kernels:"<<std::endl; + if (m_KernelFunctorList.size() != 0 && m_PonderationList.size() != 0 && m_KernelFunctorList.size() == m_PonderationList.size()) + { + for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) + { + std::cout<<m_KernelFunctorList[i]->GetName()<<":"<<std::endl; + std::cout<<"Associated ponderation:"<<m_PonderationList[i]<<std::endl; + m_KernelFunctorList[i]->print_parameters(); + std::cout<<std::endl; + } + } + else + { + itkGenericExceptionMacro(<<"ComposedKernelFunctor::print_param() : lists dimensions mismatch"); + } +} + + +int +ComposedKernelFunctor:: +load_parameters(FILE ** pfile) +{ + int NbParams(0); + char keyword[81]; + char value[81]; + + // Read functor name + fscanf(*pfile,"%80s",keyword); + this->SetName(std::string(keyword)); + // Read number of parameters + fscanf(*pfile,"%d",&NbParams); + + for ( int cpt=0 ; cpt < NbParams ; cpt++) + { + fscanf(*pfile,"%80s",keyword); + fscanf(*pfile,"%80s",value); + this->SetValue<std::string>(keyword, value); + } + + char tempChar[100]; + fscanf(*pfile, "%80s", tempChar); + while( strcmp(tempChar,"Ponderation")==0 || strcmp(tempChar,"list:")==0 ) + { + fscanf(*pfile, "%80s", tempChar); + } + + unsigned int i = 0; + while( strcmp(tempChar,"Kernels")!=0 ) + { + m_PonderationList.push_back(::atof(tempChar)); + fscanf(*pfile, "%80s", tempChar); + i++; + } + while( strcmp(tempChar,"Kernels")==0 || strcmp(tempChar,"list:")==0 || strcmp(tempChar,"Number")==0 || strcmp(tempChar,"of")==0 || strcmp(tempChar,"Kernels:")==0) + { + fscanf(*pfile, "%80s", tempChar); + } + int NbOfKernels = ::atoi(tempChar); + + for(unsigned int j=0; j<static_cast<unsigned int>(NbOfKernels); j++) + { + fscanf(*pfile, "%80s", tempChar); + GenericKernelFunctorBase * gen; + gen = new GenericKernelFunctorBase; + gen->load_parameters(pfile); + m_KernelFunctorList.push_back(gen); + // Add the pointer to the "Have to Deleted" pointer list + m_HaveToBeDeletedList.push_back(gen); + } + + return 0; +} + + +int +ComposedKernelFunctor:: +save_parameters(FILE ** pfile, const char * composed_kernel_parameters_keyword)const +{ + MapConstIterator iter = this->GetMapParameters().begin(); + std::string line(composed_kernel_parameters_keyword); + std::string strNbParams; + ::otb::StringStream flux; + flux << this->GetMapParameters().size(); + flux >> strNbParams; + line = line + " " + this->GetName() + " " + strNbParams; + while( iter != this->GetMapParameters().end() ) + { + line = line + " " + iter->first + " " + iter->second; + ++iter; + } + line = line + "\n" + "Ponderation list:\n"; + + for (unsigned int i = 0; i<m_PonderationList.size(); i++) + { + std::string ponde; + ::otb::StringStream flux; + flux << m_PonderationList[i]; + flux >> ponde; + line = line + " " + ponde; + } + line = line + "\n" + "Kernels list:\nNumber of Kernels: "; + std::string nbOfKernels; + ::otb::StringStream flux2; + flux2 << m_KernelFunctorList.size(); + flux2 >> nbOfKernels; + + line = line + nbOfKernels + "\n"; + fprintf(*pfile,"%s", line.c_str()); + for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) + { + m_KernelFunctorList[i]->save_parameters(pfile, "generic_kernel_parameters"); + } + + return 0; +} +/*** End OTB modification ***/ + + diff --git a/Utilities/otbsvm/svm.cxx b/Utilities/otbsvm/svm.cxx deleted file mode 100644 index dd5ae3d2d5..0000000000 --- a/Utilities/otbsvm/svm.cxx +++ /dev/null @@ -1,3788 +0,0 @@ -//OTB's modifications -#include <iostream> - -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <ctype.h> -#include <float.h> -#include <string.h> -#include <stdarg.h> -#include "svm.h" -typedef float Qfloat; -//#include <double.h> -//typedef double Qfloat; - - -typedef signed char schar; -#ifndef min -template <class T> inline T min(T x,T y) { return (x<y)?x:y; } -#endif -#ifndef max -template <class T> inline T max(T x,T y) { return (x>y)?x:y; } -#endif -template <class T> inline void swap(T& x, T& y) { T t=x; x=y; y=t; } -template <class S, class T> inline void clone(T*& dst, S* src, int n) -{ - dst = new T[n]; - memcpy((void *)dst,(void *)src,sizeof(T)*n); -} -inline double powi(double base, int times) -{ - double tmp = base, ret = 1.0; - - for(int t=times; t>0; t/=2) - { - if(t%2==1) ret*=tmp; - tmp = tmp * tmp; - } - return ret; -} -#define INF HUGE_VAL -#define TAU 1e-12 -#define Malloc(type,n) new type[n] -#if 1 -void info(char *fmt,...) -{ - va_list ap; - va_start(ap,fmt); - vprintf(fmt,ap); - va_end(ap); -} -void info_flush() -{ - fflush(stdout); -} -#else -void info(char *fmt,...) {} -void info_flush() {} -#endif - -// **************************************************************************************** -// Kernel Cache -// **************************************************************************************** -// l is the number of total data items -// size is the cache size limit in bytes -// -class Cache -{ -public: - Cache(int l,long int size); - ~Cache(); - - // request data [0,len) - // return some position p where [p,len) need to be filled - // (p >= len if nothing needs to be filled) - int get_data(const int index, Qfloat **data, int len); - void swap_index(int i, int j); // future_option -private: - int l; - long int size; - struct head_t - { - head_t *prev, *next; // a cicular list - Qfloat *data; - int len; // data[0,len) is cached in this entry - }; - - head_t *head; - head_t lru_head; - void lru_delete(head_t *h); - void lru_insert(head_t *h); -}; - -Cache::Cache(int l_,long int size_):l(l_),size(size_) -{ - head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 - size /= sizeof(Qfloat); - size -= l * sizeof(head_t) / sizeof(Qfloat); - size = max(size, (long int) 2*l); // cache must be large enough for two columns - lru_head.next = lru_head.prev = &lru_head; -} - -Cache::~Cache() -{ - for(head_t *h = lru_head.next; h != &lru_head; h=h->next) - delete [](h->data); - delete [](head); -} - -void Cache::lru_delete(head_t *h) -{ - // delete from current location - h->prev->next = h->next; - h->next->prev = h->prev; -} - -void Cache::lru_insert(head_t *h) -{ - // insert to last position - h->next = &lru_head; - h->prev = lru_head.prev; - h->prev->next = h; - h->next->prev = h; -} - -int Cache::get_data(const int index, Qfloat **data, int len) -{ - head_t *h = &head[index]; - if(h->len) lru_delete(h); - int more = len - h->len; - - if(more > 0) - { - // free old space - while(size < more) - { - head_t *old = lru_head.next; - lru_delete(old); - delete [](old->data); - size += old->len; - old->data = 0; - old->len = 0; - } - - // allocate new space - h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); - size -= more; - swap(h->len,len); - } - - lru_insert(h); - *data = h->data; - return len; -} - -void Cache::swap_index(int i, int j) -{ - if(i==j) return; - - if(head[i].len) lru_delete(&head[i]); - if(head[j].len) lru_delete(&head[j]); - swap(head[i].data,head[j].data); - swap(head[i].len,head[j].len); - if(head[i].len) lru_insert(&head[i]); - if(head[j].len) lru_insert(&head[j]); - - if(i>j) swap(i,j); - for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) - { - if(h->len > i) - { - if(h->len > j) - swap(h->data[i],h->data[j]); - else - { - // give up - lru_delete(h); - delete [](h->data); - size += h->len; - h->data = 0; - h->len = 0; - } - } - } -} - - -// **************************************************************************************** -// Kernel evaluation -// **************************************************************************************** -// the static method k_function is for doing single kernel evaluation -// the constructor of Kernel prepares to calculate the l*l kernel matrix -// the member function get_Q is for getting one column from the Q Matrix -// -class QMatrix { -public: - virtual Qfloat *get_Q(int column, int len) const = 0; - virtual Qfloat *get_QD() const = 0; - virtual void swap_index(int i, int j) const = 0; - virtual ~QMatrix() {} -}; - -class Kernel: public QMatrix { -public: - Kernel(int l, svm_node * const * x, const svm_parameter& param); - virtual ~Kernel(); - - static double k_function(const svm_node *x, const svm_node *y, - const svm_parameter& param); - virtual Qfloat *get_Q(int column, int len) const = 0; - virtual Qfloat *get_QD() const = 0; - virtual void swap_index(int i, int j) const // no so const... - { - swap(x[i],x[j]); - if(x_square) swap(x_square[i],x_square[j]); - } - -protected: - - //OTB's modifications - double (Kernel::*kernel_function)(int i, int j, const svm_parameter& param) const; - const svm_parameter& m_param; - -private: - const svm_node **x; - double *x_square; - - // svm_parameter - const int kernel_type; - const int degree; - const double gamma; - const double coef0; - - static double dot(const svm_node *px, const svm_node *py); - double kernel_linear(int i, int j, const svm_parameter& param) const - { - return dot(x[i],x[j]); - } - double kernel_poly(int i, int j, const svm_parameter& param) const - { - return powi(gamma*dot(x[i],x[j])+coef0,degree); - } - double kernel_rbf(int i, int j, const svm_parameter& param) const - { - return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); - } - double kernel_sigmoid(int i, int j, const svm_parameter& param) const - { - return tanh(gamma*dot(x[i],x[j])+coef0); - } - double kernel_precomputed(int i, int j, const svm_parameter& param) const - { - return x[i][(int)(x[j][0].value)].value; - } - //OTB's modifications - double kernel_generic(int i, int j, const svm_parameter& param) const - { - if( param.kernel_generic == NULL ) - { - itkGenericExceptionMacro( << "Generic Kernel is not initialiszed !"); - } - return ((*param.kernel_generic)(x[i],x[j],param)); - } - // Composed kernel - double kernel_composed(int i, int j, const svm_parameter& param) const - { - if( param.kernel_composed == NULL ) - { - itkGenericExceptionMacro( << "Generic Kernel is not initialiszed !"); - } - return ((*param.kernel_composed)(x[i],x[j],param)); - } -}; - -Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) -//OTB's modifications -:m_param(param),kernel_type(param.kernel_type), degree(param.degree), - gamma(param.gamma), coef0(param.coef0) -{ - switch(kernel_type) - { - case LINEAR: - kernel_function = &Kernel::kernel_linear; - break; - case POLY: - kernel_function = &Kernel::kernel_poly; - break; - case RBF: - kernel_function = &Kernel::kernel_rbf; - break; - case SIGMOID: - kernel_function = &Kernel::kernel_sigmoid; - break; - case PRECOMPUTED: - kernel_function = &Kernel::kernel_precomputed; - break; - //OTB's modifications - case GENERIC: - kernel_function = &Kernel::kernel_generic; - break; - case COMPOSED: - kernel_function = &Kernel::kernel_composed; - break; - - } - - clone(x,x_,l); - - if(kernel_type == RBF) - { - x_square = new double[l]; - for(int i=0;i<l;i++) - x_square[i] = dot(x[i],x[i]); - } - else - x_square = 0; -} - -Kernel::~Kernel() -{ - delete[] x; - delete[] x_square; -} - -double Kernel::dot(const svm_node *px, const svm_node *py) -{ - double sum = 0.; - while(px->index != -1 && py->index != -1) - { - if(px->index == py->index) - { - sum += px->value * py->value; - ++px; - ++py; - } - else - { - if(px->index > py->index) - ++py; - else - ++px; - } - } - return sum; -} - -double Kernel::k_function(const svm_node *x, const svm_node *y, - const svm_parameter& param) -{ - switch(param.kernel_type) - { - case LINEAR: - return dot(x,y); - case POLY: - return powi(param.gamma*dot(x,y)+param.coef0,param.degree); - case RBF: - { - double sum = 0; - while(x->index != -1 && y->index !=-1) - { - if(x->index == y->index) - { - double d = x->value - y->value; - sum += d*d; - ++x; - ++y; - } - else - { - if(x->index > y->index) - { - sum += y->value * y->value; - ++y; - } - else - { - sum += x->value * x->value; - ++x; - } - } - } - - while(x->index != -1) - { - sum += x->value * x->value; - ++x; - } - - while(y->index != -1) - { - sum += y->value * y->value; - ++y; - } - - return exp(-param.gamma*sum); - } - case SIGMOID: - return tanh(param.gamma*dot(x,y)+param.coef0); - case PRECOMPUTED: //x: test (validation), y: SV - return x[(int)(y->value)].value; - //OTB's modifications - case GENERIC: - return ((*param.kernel_generic)(x,y,param)); - // Composed kernel - case COMPOSED: - return ((*param.kernel_composed)(x,y,param)); - default: - return 0; /* Unreachable */ - } -} - - -// **************************************************************************************** -// SOLVER -// **************************************************************************************** -// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 -// Solves: -// -// min 0.5(\alpha^T Q \alpha) + p^T \alpha -// -// y^T \alpha = \delta -// y_i = +1 or -1 -// 0 <= alpha_i <= Cp for y_i = 1 -// 0 <= alpha_i <= Cn for y_i = -1 -// -// Given: -// -// Q, p, y, Cp, Cn, and an initial feasible point \alpha -// l is the size of vectors and matrices -// eps is the stopping tolerance -// -// solution will be put in \alpha, objective value will be put in obj -// -class Solver { -public: - Solver() {}; - virtual ~Solver() {}; - - struct SolutionInfo { - double obj; - double rho; - double upper_bound_p; - double upper_bound_n; - double r; // for Solver_NU - }; - - void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, - double *alpha_, double Cp, double Cn, double eps, - SolutionInfo* si, int shrinking); -protected: - int active_size; - schar *y; - double *G; // gradient of objective function - enum { LOWER_BOUND, UPPER_BOUND, FREE }; - char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE - double *alpha; - const QMatrix *Q; - const Qfloat *QD; - double eps; - double Cp,Cn; - double *p; - int *active_set; - double *G_bar; // gradient, if we treat free variables as 0 - int l; - bool unshrinked; // XXX - - double get_C(int i) - { - return (y[i] > 0)? Cp : Cn; - } - void update_alpha_status(int i) - { - if(alpha[i] >= get_C(i)) - alpha_status[i] = UPPER_BOUND; - else if(alpha[i] <= 0) - alpha_status[i] = LOWER_BOUND; - else alpha_status[i] = FREE; - } - bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } - bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } - bool is_free(int i) { return alpha_status[i] == FREE; } - void swap_index(int i, int j); - void reconstruct_gradient(); - virtual int select_working_set(int &i, int &j); - virtual double calculate_rho(); - virtual void do_shrinking(); -private: - bool be_shrunken(int i, double Gmax1, double Gmax2); -}; - -void Solver::swap_index(int i, int j) -{ - Q->swap_index(i,j); - swap(y[i],y[j]); - swap(G[i],G[j]); - swap(alpha_status[i],alpha_status[j]); - swap(alpha[i],alpha[j]); - swap(p[i],p[j]); - swap(active_set[i],active_set[j]); - swap(G_bar[i],G_bar[j]); -} - -void Solver::reconstruct_gradient() -{ - // reconstruct inactive elements of G from G_bar and free variables - - if(active_size == l) return; - - int i; - for(i=active_size;i<l;i++) - G[i] = G_bar[i] + p[i]; - - for(i=0;i<active_size;i++) - if(is_free(i)) - { - const Qfloat *Q_i = Q->get_Q(i,l); - double alpha_i = alpha[i]; - for(int j=active_size;j<l;j++) - G[j] += alpha_i * Q_i[j]; - } -} - -void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, - double *alpha_, double Cp, double Cn, double eps, - SolutionInfo* si, int shrinking) -{ - this->l = l; - this->Q = &Q; - QD=Q.get_QD(); - clone(p, p_,l); - clone(y, y_,l); - clone(alpha,alpha_,l); - this->Cp = Cp; - this->Cn = Cn; - this->eps = eps; - unshrinked = false; - - // initialize alpha_status - { - alpha_status = new char[l]; - for(int i=0;i<l;i++) - update_alpha_status(i); - } - - // initialize active set (for shrinking) - { - active_set = new int[l]; - for(int i=0;i<l;i++) - active_set[i] = i; - active_size = l; - } - - // initialize gradient - { - G = new double[l]; - G_bar = new double[l]; - int i; - for(i=0;i<l;i++) - { - G[i] = p[i]; - G_bar[i] = 0; - } - for(i=0;i<l;i++) - if(!is_lower_bound(i)) - { - const Qfloat *Q_i = Q.get_Q(i,l); - double alpha_i = alpha[i]; - int j; - for(j=0;j<l;j++) - G[j] += alpha_i*Q_i[j]; - if(is_upper_bound(i)) - for(j=0;j<l;j++) - G_bar[j] += get_C(i) * Q_i[j]; - } - } - - // optimization step - - int iter = 0; - int counter = min(l,1000)+1; - - while(1) - { - // show progress and do shrinking - - if(--counter == 0) - { - counter = min(l,1000); - if(shrinking) do_shrinking(); - info("."); info_flush(); - } - - int i,j; - if(select_working_set(i,j)!=0) - { - // reconstruct the whole gradient - reconstruct_gradient(); - // reset active set size and check - active_size = l; - info("*"); info_flush(); - if(select_working_set(i,j)!=0) - break; - else - counter = 1; // do shrinking next iteration - } - - ++iter; - - // update alpha[i] and alpha[j], handle bounds carefully - - const Qfloat *Q_i = Q.get_Q(i,active_size); - const Qfloat *Q_j = Q.get_Q(j,active_size); - - double C_i = get_C(i); - double C_j = get_C(j); - - double old_alpha_i = alpha[i]; - double old_alpha_j = alpha[j]; - - if(y[i]!=y[j]) - { - double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j]; - if (quad_coef <= 0) - quad_coef = TAU; - double delta = (-G[i]-G[j])/quad_coef; - double diff = alpha[i] - alpha[j]; - alpha[i] += delta; - alpha[j] += delta; - - if(diff > 0) - { - if(alpha[j] < 0) - { - alpha[j] = 0; - alpha[i] = diff; - } - } - else - { - if(alpha[i] < 0) - { - alpha[i] = 0; - alpha[j] = -diff; - } - } - if(diff > C_i - C_j) - { - if(alpha[i] > C_i) - { - alpha[i] = C_i; - alpha[j] = C_i - diff; - } - } - else - { - if(alpha[j] > C_j) - { - alpha[j] = C_j; - alpha[i] = C_j + diff; - } - } - } - else - { - double quad_coef = Q_i[i]+Q_j[j]-2*Q_i[j]; - if (quad_coef <= 0) - quad_coef = TAU; - double delta = (G[i]-G[j])/quad_coef; - double sum = alpha[i] + alpha[j]; - alpha[i] -= delta; - alpha[j] += delta; - - if(sum > C_i) - { - if(alpha[i] > C_i) - { - alpha[i] = C_i; - alpha[j] = sum - C_i; - } - } - else - { - if(alpha[j] < 0) - { - alpha[j] = 0; - alpha[i] = sum; - } - } - if(sum > C_j) - { - if(alpha[j] > C_j) - { - alpha[j] = C_j; - alpha[i] = sum - C_j; - } - } - else - { - if(alpha[i] < 0) - { - alpha[i] = 0; - alpha[j] = sum; - } - } - } - - // update G - - double delta_alpha_i = alpha[i] - old_alpha_i; - double delta_alpha_j = alpha[j] - old_alpha_j; - - for(int k=0;k<active_size;k++) - { - G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; - } - - // update alpha_status and G_bar - - { - bool ui = is_upper_bound(i); - bool uj = is_upper_bound(j); - update_alpha_status(i); - update_alpha_status(j); - int k; - if(ui != is_upper_bound(i)) - { - Q_i = Q.get_Q(i,l); - if(ui) - for(k=0;k<l;k++) - G_bar[k] -= C_i * Q_i[k]; - else - for(k=0;k<l;k++) - G_bar[k] += C_i * Q_i[k]; - } - - if(uj != is_upper_bound(j)) - { - Q_j = Q.get_Q(j,l); - if(uj) - for(k=0;k<l;k++) - G_bar[k] -= C_j * Q_j[k]; - else - for(k=0;k<l;k++) - G_bar[k] += C_j * Q_j[k]; - } - } - } - - // calculate rho - - si->rho = calculate_rho(); - - // calculate objective value - { - double v = 0; - int i; - for(i=0;i<l;i++) - v += alpha[i] * (G[i] + p[i]); - - si->obj = v/2; - } - - // put back the solution - { - for(int i=0;i<l;i++) - alpha_[active_set[i]] = alpha[i]; - } - - // juggle everything back - /*{ - for(int i=0;i<l;i++) - while(active_set[i] != i) - swap_index(i,active_set[i]); - // or Q.swap_index(i,active_set[i]); - }*/ - - si->upper_bound_p = Cp; - si->upper_bound_n = Cn; - - info("\noptimization finished, #iter = %d\n",iter); - - delete[] p; - delete[] y; - delete[] alpha; - delete[] alpha_status; - delete[] active_set; - delete[] G; - delete[] G_bar; -} - -// return 1 if already optimal, return 0 otherwise -int Solver::select_working_set(int &out_i, int &out_j) -{ - // return i,j such that - // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) - // j: minimizes the decrease of obj value - // (if quadratic coefficeint <= 0, replace it with tau) - // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) - - double Gmax = -INF; - double Gmax2 = -INF; - int Gmax_idx = -1; - int Gmin_idx = -1; - double obj_diff_min = INF; - - for(int t=0;t<active_size;t++) - if(y[t]==+1) - { - if(!is_upper_bound(t)) - if(-G[t] >= Gmax) - { - Gmax = -G[t]; - Gmax_idx = t; - } - } - else - { - if(!is_lower_bound(t)) - if(G[t] >= Gmax) - { - Gmax = G[t]; - Gmax_idx = t; - } - } - - int i = Gmax_idx; - const Qfloat *Q_i = NULL; - if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 - Q_i = Q->get_Q(i,active_size); - - for(int j=0;j<active_size;j++) - { - if(y[j]==+1) - { - if (!is_lower_bound(j)) - { - double grad_diff=Gmax+G[j]; - if (G[j] >= Gmax2) - Gmax2 = G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef=Q_i[i]+QD[j]-2*y[i]*Q_i[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - else - { - if (!is_upper_bound(j)) - { - double grad_diff= Gmax-G[j]; - if (-G[j] >= Gmax2) - Gmax2 = -G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef=Q_i[i]+QD[j]+2*y[i]*Q_i[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - } - - if(Gmax+Gmax2 < eps) - return 1; - - out_i = Gmax_idx; - out_j = Gmin_idx; - return 0; -} - -bool Solver::be_shrunken(int i, double Gmax1, double Gmax2) -{ - if(is_upper_bound(i)) - { - if(y[i]==+1) - return(-G[i] > Gmax1); - else - return(-G[i] > Gmax2); - } - else if(is_lower_bound(i)) - { - if(y[i]==+1) - return(G[i] > Gmax2); - else - return(G[i] > Gmax1); - } - else - return(false); -} - -void Solver::do_shrinking() -{ - int i; - double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } - double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } - - // find maximal violating pair first - for(i=0;i<active_size;i++) - { - if(y[i]==+1) - { - if(!is_upper_bound(i)) - { - if(-G[i] >= Gmax1) - Gmax1 = -G[i]; - } - if(!is_lower_bound(i)) - { - if(G[i] >= Gmax2) - Gmax2 = G[i]; - } - } - else - { - if(!is_upper_bound(i)) - { - if(-G[i] >= Gmax2) - Gmax2 = -G[i]; - } - if(!is_lower_bound(i)) - { - if(G[i] >= Gmax1) - Gmax1 = G[i]; - } - } - } - - // shrink - - for(i=0;i<active_size;i++) - if (be_shrunken(i, Gmax1, Gmax2)) - { - active_size--; - while (active_size > i) - { - if (!be_shrunken(active_size, Gmax1, Gmax2)) - { - swap_index(i,active_size); - break; - } - active_size--; - } - } - - // unshrink, check all variables again before final iterations - - if(unshrinked || Gmax1 + Gmax2 > eps*10) return; - - unshrinked = true; - reconstruct_gradient(); - - for(i=l-1;i>=active_size;i--) - if (!be_shrunken(i, Gmax1, Gmax2)) - { - while (active_size < i) - { - if (be_shrunken(active_size, Gmax1, Gmax2)) - { - swap_index(i,active_size); - break; - } - active_size++; - } - active_size++; - } -} - -double Solver::calculate_rho() -{ - double r; - int nr_free = 0; - double ub = INF, lb = -INF, sum_free = 0; - for(int i=0;i<active_size;i++) - { - double yG = y[i]*G[i]; - - if(is_upper_bound(i)) - { - if(y[i]==-1) - ub = min(ub,yG); - else - lb = max(lb,yG); - } - else if(is_lower_bound(i)) - { - if(y[i]==+1) - ub = min(ub,yG); - else - lb = max(lb,yG); - } - else - { - ++nr_free; - sum_free += yG; - } - } - - if(nr_free>0) - r = sum_free/nr_free; - else - r = (ub+lb)/2; - - return r; -} - -// **************************************************************************************** -// Solver for nu-svm classification and regression -// **************************************************************************************** -// additional constraint: e^T \alpha = constant -// -class Solver_NU : public Solver -{ -public: - Solver_NU() {} - void Solve(int l, const QMatrix& Q, const double *p, const schar *y, - double *alpha, double Cp, double Cn, double eps, - SolutionInfo* si, int shrinking) - { - this->si = si; - Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); - } -private: - SolutionInfo *si; - int select_working_set(int &i, int &j); - double calculate_rho(); - bool be_shrunken(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); - void do_shrinking(); -}; - -// return 1 if already optimal, return 0 otherwise -int Solver_NU::select_working_set(int &out_i, int &out_j) -{ - // return i,j such that y_i = y_j and - // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) - // j: minimizes the decrease of obj value - // (if quadratic coefficeint <= 0, replace it with tau) - // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) - - double Gmaxp = -INF; - double Gmaxp2 = -INF; - int Gmaxp_idx = -1; - - double Gmaxn = -INF; - double Gmaxn2 = -INF; - int Gmaxn_idx = -1; - - int Gmin_idx = -1; - double obj_diff_min = INF; - - for(int t=0;t<active_size;t++) - if(y[t]==+1) - { - if(!is_upper_bound(t)) - if(-G[t] >= Gmaxp) - { - Gmaxp = -G[t]; - Gmaxp_idx = t; - } - } - else - { - if(!is_lower_bound(t)) - if(G[t] >= Gmaxn) - { - Gmaxn = G[t]; - Gmaxn_idx = t; - } - } - - int ip = Gmaxp_idx; - int in = Gmaxn_idx; - const Qfloat *Q_ip = NULL; - const Qfloat *Q_in = NULL; - if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 - Q_ip = Q->get_Q(ip,active_size); - if(in != -1) - Q_in = Q->get_Q(in,active_size); - - for(int j=0;j<active_size;j++) - { - if(y[j]==+1) - { - if (!is_lower_bound(j)) - { - double grad_diff=Gmaxp+G[j]; - if (G[j] >= Gmaxp2) - Gmaxp2 = G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - else - { - if (!is_upper_bound(j)) - { - double grad_diff=Gmaxn-G[j]; - if (-G[j] >= Gmaxn2) - Gmaxn2 = -G[j]; - if (grad_diff > 0) - { - double obj_diff; - double quad_coef = Q_in[in]+QD[j]-2*Q_in[j]; - if (quad_coef > 0) - obj_diff = -(grad_diff*grad_diff)/quad_coef; - else - obj_diff = -(grad_diff*grad_diff)/TAU; - - if (obj_diff <= obj_diff_min) - { - Gmin_idx=j; - obj_diff_min = obj_diff; - } - } - } - } - } - - if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) - return 1; - - if (y[Gmin_idx] == +1) - out_i = Gmaxp_idx; - else - out_i = Gmaxn_idx; - out_j = Gmin_idx; - - return 0; -} - -bool Solver_NU::be_shrunken(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) -{ - if(is_upper_bound(i)) - { - if(y[i]==+1) - return(-G[i] > Gmax1); - else - return(-G[i] > Gmax4); - } - else if(is_lower_bound(i)) - { - if(y[i]==+1) - return(G[i] > Gmax2); - else - return(G[i] > Gmax3); - } - else - return(false); -} - -void Solver_NU::do_shrinking() -{ - double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } - double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } - double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } - double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } - - // find maximal violating pair first - int i; - for(i=0;i<active_size;i++) - { - if(!is_upper_bound(i)) - { - if(y[i]==+1) - { - if(-G[i] > Gmax1) Gmax1 = -G[i]; - } - else if(-G[i] > Gmax4) Gmax4 = -G[i]; - } - if(!is_lower_bound(i)) - { - if(y[i]==+1) - { - if(G[i] > Gmax2) Gmax2 = G[i]; - } - else if(G[i] > Gmax3) Gmax3 = G[i]; - } - } - - // shrinking - - for(i=0;i<active_size;i++) - if (be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4)) - { - active_size--; - while (active_size > i) - { - if (!be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) - { - swap_index(i,active_size); - break; - } - active_size--; - } - } - - // unshrink, check all variables again before final iterations - - if(unshrinked || max(Gmax1+Gmax2,Gmax3+Gmax4) > eps*10) return; - - unshrinked = true; - reconstruct_gradient(); - - for(i=l-1;i>=active_size;i--) - if (!be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4)) - { - while (active_size < i) - { - if (be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) - { - swap_index(i,active_size); - break; - } - active_size++; - } - active_size++; - } -} - -double Solver_NU::calculate_rho() -{ - int nr_free1 = 0,nr_free2 = 0; - double ub1 = INF, ub2 = INF; - double lb1 = -INF, lb2 = -INF; - double sum_free1 = 0, sum_free2 = 0; - - for(int i=0;i<active_size;i++) - { - if(y[i]==+1) - { - if(is_upper_bound(i)) - lb1 = max(lb1,G[i]); - else if(is_lower_bound(i)) - ub1 = min(ub1,G[i]); - else - { - ++nr_free1; - sum_free1 += G[i]; - } - } - else - { - if(is_upper_bound(i)) - lb2 = max(lb2,G[i]); - else if(is_lower_bound(i)) - ub2 = min(ub2,G[i]); - else - { - ++nr_free2; - sum_free2 += G[i]; - } - } - } - - double r1,r2; - if(nr_free1 > 0) - r1 = sum_free1/nr_free1; - else - r1 = (ub1+lb1)/2; - - if(nr_free2 > 0) - r2 = sum_free2/nr_free2; - else - r2 = (ub2+lb2)/2; - - si->r = (r1+r2)/2; - return (r1-r2)/2; -} - -// **************************************************************************************** -// Q matrices for various formulations -// **************************************************************************************** -class SVC_Q: public Kernel -{ -public: - SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) - :Kernel(prob.l, prob.x, param) - { - clone(y,y_,prob.l); - cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); - QD = new Qfloat[prob.l]; - for(int i=0;i<prob.l;i++) - QD[i]= (Qfloat)(this->*kernel_function)(i,i,this->m_param); - } - - Qfloat *get_Q(int i, int len) const - { - Qfloat *data; - int start; - if((start = cache->get_data(i,&data,len)) < len) - { - for(int j=start;j<len;j++) - data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j,this->m_param)); - } - return data; - } - - Qfloat *get_QD() const - { - return QD; - } - - void swap_index(int i, int j) const - { - cache->swap_index(i,j); - Kernel::swap_index(i,j); - swap(y[i],y[j]); - swap(QD[i],QD[j]); - } - - ~SVC_Q() - { - delete[] y; - delete cache; - delete[] QD; - } -private: - schar *y; - Cache *cache; - Qfloat *QD; -}; - - -// **************************************************************************************** -// ONE_CLASS_Q -// **************************************************************************************** -class ONE_CLASS_Q: public Kernel -{ -public: - ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) - :Kernel(prob.l, prob.x, param) - { - cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); - QD = new Qfloat[prob.l]; - for(int i=0;i<prob.l;i++) - //OTB's modifications - QD[i]= (Qfloat)(this->*kernel_function)(i,i,this->m_param); - } - - Qfloat *get_Q(int i, int len) const - { - Qfloat *data; - int start; - if((start = cache->get_data(i,&data,len)) < len) - { - //OTB's modifications - for(int j=start;j<len;j++) - data[j] = (Qfloat)(this->*kernel_function)(i,j,this->m_param); - } - return data; - } - - Qfloat *get_QD() const - { - return QD; - } - - void swap_index(int i, int j) const - { - cache->swap_index(i,j); - Kernel::swap_index(i,j); - swap(QD[i],QD[j]); - } - - ~ONE_CLASS_Q() - { - delete cache; - delete[] QD; - } -private: - Cache *cache; - Qfloat *QD; -}; - -class SVR_Q: public Kernel -{ -public: - SVR_Q(const svm_problem& prob, const svm_parameter& param) - :Kernel(prob.l, prob.x, param) - { - l = prob.l; - cache = new Cache(l,(long int)(param.cache_size*(1<<20))); - QD = new Qfloat[2*l]; - sign = new schar[2*l]; - index = new int[2*l]; - for(int k=0;k<l;k++) - { - sign[k] = 1; - sign[k+l] = -1; - index[k] = k; - index[k+l] = k; - //OTB's modifications - QD[k]= (Qfloat)(this->*kernel_function)(k,k,this->m_param); - QD[k+l]=QD[k]; - } - buffer[0] = new Qfloat[2*l]; - buffer[1] = new Qfloat[2*l]; - next_buffer = 0; - } - - void swap_index(int i, int j) const - { - swap(sign[i],sign[j]); - swap(index[i],index[j]); - swap(QD[i],QD[j]); - } - - Qfloat *get_Q(int i, int len) const - { - Qfloat *data; - int real_i = index[i]; - if(cache->get_data(real_i,&data,l) < l) - { - for(int j=0;j<l;j++) - //OTB's modifications - data[j] = (Qfloat)(this->*kernel_function)(real_i,j,this->m_param); - } - - // reorder and copy - Qfloat *buf = buffer[next_buffer]; - next_buffer = 1 - next_buffer; - schar si = sign[i]; - for(int j=0;j<len;j++) - buf[j] = si * sign[j] * data[index[j]]; - return buf; - } - - Qfloat *get_QD() const - { - return QD; - } - - ~SVR_Q() - { - delete cache; - delete[] sign; - delete[] index; - delete[] buffer[0]; - delete[] buffer[1]; - delete[] QD; - } -private: - int l; - Cache *cache; - schar *sign; - int *index; - mutable int next_buffer; - Qfloat *buffer[2]; - Qfloat *QD; -}; - -// **************************************************************************************** -// construct and solve various formulations -// **************************************************************************************** -static void solve_c_svc( - const svm_problem *prob, const svm_parameter* param, - double *alpha, Solver::SolutionInfo* si, double Cp, double Cn) -{ - int l = prob->l; - double *minus_ones = new double[l]; - schar *y = new schar[l]; - - int i; - - for(i=0;i<l;i++) - { - alpha[i] = 0; - minus_ones[i] = -1; - if(prob->y[i] > 0) y[i] = +1; else y[i]=-1; - } - - Solver s; - s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, - alpha, Cp, Cn, param->eps, si, param->shrinking); - - double sum_alpha=0; - for(i=0;i<l;i++) - sum_alpha += alpha[i]; - - if (Cp==Cn) - info("nu = %f\n", sum_alpha/(Cp*prob->l)); - - for(i=0;i<l;i++) - alpha[i] *= y[i]; - - delete[] minus_ones; - delete[] y; -} - -static void solve_nu_svc( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int i; - int l = prob->l; - double nu = param->nu; - - schar *y = new schar[l]; - - for(i=0;i<l;i++) - if(prob->y[i]>0) - y[i] = +1; - else - y[i] = -1; - - double sum_pos = nu*l/2; - double sum_neg = nu*l/2; - - for(i=0;i<l;i++) - if(y[i] == +1) - { - alpha[i] = min(1.0,sum_pos); - sum_pos -= alpha[i]; - } - else - { - alpha[i] = min(1.0,sum_neg); - sum_neg -= alpha[i]; - } - - double *zeros = new double[l]; - - for(i=0;i<l;i++) - zeros[i] = 0; - - Solver_NU s; - s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, - alpha, 1.0, 1.0, param->eps, si, param->shrinking); - double r = si->r; - - info("C = %f\n",1/r); - - for(i=0;i<l;i++) - alpha[i] *= y[i]/r; - - si->rho /= r; - si->obj /= (r*r); - si->upper_bound_p = 1/r; - si->upper_bound_n = 1/r; - - delete[] y; - delete[] zeros; -} - -// estimatethe support of high-dimensional distribution. -static void solve_one_class( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int l = prob->l; - double *zeros = new double[l]; - schar *ones = new schar[l]; - int i; - - int n = (int)(param->nu*prob->l); // # of alpha's at upper bound - - for(i=0;i<n;i++) - alpha[i] = 1; - if(n<prob->l) - alpha[n] = param->nu * prob->l - n; - for(i=n+1;i<l;i++) - alpha[i] = 0; - - for(i=0;i<l;i++) - { - zeros[i] = 0; - ones[i] = 1; - } - - Solver s; - s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, - alpha, 1.0, 1.0, param->eps, si, param->shrinking); - - delete[] zeros; - delete[] ones; -} - - -// epsilon support vector regression -static void solve_epsilon_svr( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int l = prob->l; - double *alpha2 = new double[2*l]; - double *linear_term = new double[2*l]; - schar *y = new schar[2*l]; - int i; - - for(i=0;i<l;i++) - { - alpha2[i] = 0; - linear_term[i] = param->p - prob->y[i]; - y[i] = 1; - - alpha2[i+l] = 0; - linear_term[i+l] = param->p + prob->y[i]; - y[i+l] = -1; - } - - Solver s; - s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, - alpha2, param->C, param->C, param->eps, si, param->shrinking); - - double sum_alpha = 0; - for(i=0;i<l;i++) - { - alpha[i] = alpha2[i] - alpha2[i+l]; - sum_alpha += fabs(alpha[i]); - } - info("nu = %f\n",sum_alpha/(param->C*l)); - - delete[] alpha2; - delete[] linear_term; - delete[] y; -} - -// regression using nu to control the number of support vectors. -static void solve_nu_svr( - const svm_problem *prob, const svm_parameter *param, - double *alpha, Solver::SolutionInfo* si) -{ - int l = prob->l; - double C = param->C; - double *alpha2 = new double[2*l]; - double *linear_term = new double[2*l]; - schar *y = new schar[2*l]; - int i; - - double sum = C * param->nu * l / 2; - for(i=0;i<l;i++) - { - alpha2[i] = alpha2[i+l] = min(sum,C); - sum -= alpha2[i]; - - linear_term[i] = - prob->y[i]; - y[i] = 1; - - linear_term[i+l] = prob->y[i]; - y[i+l] = -1; - } - - Solver_NU s; - s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, - alpha2, C, C, param->eps, si, param->shrinking); - - info("epsilon = %f\n",-si->r); - - for(i=0;i<l;i++) - alpha[i] = alpha2[i] - alpha2[i+l]; - - delete[] alpha2; - delete[] linear_term; - delete[] y; -} - -// **************************************************************************************** -// decision_function -// **************************************************************************************** -struct decision_function -{ - double *alpha; - double rho; -}; - -decision_function svm_train_one( - const svm_problem *prob, const svm_parameter *param, - double Cp, double Cn) -{ - double *alpha = Malloc(double,prob->l); - Solver::SolutionInfo si; - switch(param->svm_type) - { - case C_SVC: - solve_c_svc(prob,param,alpha,&si,Cp,Cn); - break; - case NU_SVC: - solve_nu_svc(prob,param,alpha,&si); - break; - case ONE_CLASS: - solve_one_class(prob,param,alpha,&si); - break; - case EPSILON_SVR: - solve_epsilon_svr(prob,param,alpha,&si); - break; - case NU_SVR: - solve_nu_svr(prob,param,alpha,&si); - break; - } - - info("obj = %f, rho = %f\n",si.obj,si.rho); - - // output SVs - - int nSV = 0; - int nBSV = 0; - for(int i=0;i<prob->l;i++) - { - if(fabs(alpha[i]) > 0) - { - ++nSV; - if(prob->y[i] > 0) - { - if(fabs(alpha[i]) >= si.upper_bound_p) - ++nBSV; - } - else - { - if(fabs(alpha[i]) >= si.upper_bound_n) - ++nBSV; - } - } - } - - info("nSV = %d, nBSV = %d\n",nSV,nBSV); - - decision_function f; - f.alpha = alpha; - f.rho = si.rho; - return f; -} - - -// Platt's binary SVM Probablistic Output: an improvement from Lin et al. -void sigmoid_train( - int l, const double *dec_values, const double *labels, - double& A, double& B) -{ - double prior1=0, prior0 = 0; - int i; - - for (i=0;i<l;i++) - if (labels[i] > 0) prior1+=1; - else prior0+=1; - - int max_iter=100; // Maximal number of iterations - double min_step=1e-10; // Minimal step taken in line search - double sigma=1e-3; // For numerically strict PD of Hessian - double eps=1e-5; - double hiTarget=(prior1+1.0)/(prior1+2.0); - double loTarget=1/(prior0+2.0); - double *t=Malloc(double,l); - double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; - double newA,newB,newf,d1,d2; - int iter; - - // Initial Point and Initial Fun Value - A=0.0; B=log((prior0+1.0)/(prior1+1.0)); - double fval = 0.0; - - for (i=0;i<l;i++) - { - if (labels[i]>0) t[i]=hiTarget; - else t[i]=loTarget; - fApB = dec_values[i]*A+B; - if (fApB>=0) - fval += t[i]*fApB + log(1+exp(-fApB)); - else - fval += (t[i] - 1)*fApB +log(1+exp(fApB)); - } - for (iter=0;iter<max_iter;iter++) - { - // Update Gradient and Hessian (use H' = H + sigma I) - h11=sigma; // numerically ensures strict PD - h22=sigma; - h21=0.0;g1=0.0;g2=0.0; - for (i=0;i<l;i++) - { - fApB = dec_values[i]*A+B; - if (fApB >= 0) - { - p=exp(-fApB)/(1.0+exp(-fApB)); - q=1.0/(1.0+exp(-fApB)); - } - else - { - p=1.0/(1.0+exp(fApB)); - q=exp(fApB)/(1.0+exp(fApB)); - } - d2=p*q; - h11+=dec_values[i]*dec_values[i]*d2; - h22+=d2; - h21+=dec_values[i]*d2; - d1=t[i]-p; - g1+=dec_values[i]*d1; - g2+=d1; - } - - // Stopping Criteria - if (fabs(g1)<eps && fabs(g2)<eps) - break; - - // Finding Newton direction: -inv(H') * g - det=h11*h22-h21*h21; - dA=-(h22*g1 - h21 * g2) / det; - dB=-(-h21*g1+ h11 * g2) / det; - gd=g1*dA+g2*dB; - - - stepsize = 1; // Line Search - while (stepsize >= min_step) - { - newA = A + stepsize * dA; - newB = B + stepsize * dB; - - // New function value - newf = 0.0; - for (i=0;i<l;i++) - { - fApB = dec_values[i]*newA+newB; - if (fApB >= 0) - newf += t[i]*fApB + log(1+exp(-fApB)); - else - newf += (t[i] - 1)*fApB +log(1+exp(fApB)); - } - // Check sufficient decrease - if (newf<fval+0.0001*stepsize*gd) - { - A=newA;B=newB;fval=newf; - break; - } - else - stepsize = stepsize / 2.0; - } - - if (stepsize < min_step) - { - info("Line search fails in two-class probability estimates\n"); - break; - } - } - - if (iter>=max_iter) - info("Reaching maximal iterations in two-class probability estimates\n"); - delete [](t); -} - -double sigmoid_predict(double decision_value, double A, double B) -{ - double fApB = decision_value*A+B; - if (fApB >= 0) - return exp(-fApB)/(1.0+exp(-fApB)); - else - return 1.0/(1+exp(fApB)) ; -} - -// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng -void multiclass_probability(int k, double **r, double *p) -{ - int t,j; - int iter = 0, max_iter=max(100,k); - double **Q=Malloc(double *,k); - double *Qp=Malloc(double,k); - double pQp, eps=0.005/k; - - for (t=0;t<k;t++) - { - p[t]=1.0/k; // Valid if k = 1 - Q[t]=Malloc(double,k); - Q[t][t]=0; - for (j=0;j<t;j++) - { - Q[t][t]+=r[j][t]*r[j][t]; - Q[t][j]=Q[j][t]; - } - for (j=t+1;j<k;j++) - { - Q[t][t]+=r[j][t]*r[j][t]; - Q[t][j]=-r[j][t]*r[t][j]; - } - } - for (iter=0;iter<max_iter;iter++) - { - // stopping condition, recalculate QP,pQP for numerical accuracy - pQp=0; - for (t=0;t<k;t++) - { - Qp[t]=0; - for (j=0;j<k;j++) - Qp[t]+=Q[t][j]*p[j]; - pQp+=p[t]*Qp[t]; - } - double max_error=0; - for (t=0;t<k;t++) - { - double error=fabs(Qp[t]-pQp); - if (error>max_error) - max_error=error; - } - if (max_error<eps) break; - - for (t=0;t<k;t++) - { - double diff=(-Qp[t]+pQp)/Q[t][t]; - p[t]+=diff; - pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); - for (j=0;j<k;j++) - { - Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); - p[j]/=(1+diff); - } - } - } - if (iter>=max_iter) - info("Exceeds max_iter in multiclass_prob\n"); - for(t=0;t<k;t++) delete [](Q[t]); - delete [](Q); - delete [](Qp); -} - -// Cross-validation decision values for probability estimates -void svm_binary_svc_probability( - const svm_problem *prob, const svm_parameter *param, - double Cp, double Cn, double& probA, double& probB) -{ - int i; - int nr_fold = 5; - int *perm = Malloc(int,prob->l); - double *dec_values = Malloc(double,prob->l); - - // random shuffle - for(i=0;i<prob->l;i++) perm[i]=i; - for(i=0;i<prob->l;i++) - { - int j = i+rand()%(prob->l-i); - swap(perm[i],perm[j]); - } - for(i=0;i<nr_fold;i++) - { - int begin = i*prob->l/nr_fold; - int end = (i+1)*prob->l/nr_fold; - int j,k; - struct svm_problem subprob; - - subprob.l = prob->l-(end-begin); - subprob.x = Malloc(struct svm_node*,subprob.l); - subprob.y = Malloc(double,subprob.l); - - k=0; - for(j=0;j<begin;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - ++k; - } - for(j=end;j<prob->l;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - ++k; - } - int p_count=0,n_count=0; - for(j=0;j<k;j++) - if(subprob.y[j]>0) - p_count++; - else - n_count++; - - if(p_count==0 && n_count==0) - for(j=begin;j<end;j++) - dec_values[perm[j]] = 0; - else if(p_count > 0 && n_count == 0) - for(j=begin;j<end;j++) - dec_values[perm[j]] = 1; - else if(p_count == 0 && n_count > 0) - for(j=begin;j<end;j++) - dec_values[perm[j]] = -1; - else - { - svm_parameter subparam = *param; - subparam.probability=0; - subparam.C=1.0; - subparam.nr_weight=2; - subparam.weight_label = Malloc(int,2); - subparam.weight = Malloc(double,2); - subparam.weight_label[0]=+1; - subparam.weight_label[1]=-1; - subparam.weight[0]=Cp; - subparam.weight[1]=Cn; - struct svm_model *submodel = svm_train(&subprob,&subparam); - for(j=begin;j<end;j++) - { - svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); - // ensure +1 -1 order; reason not using CV subroutine - dec_values[perm[j]] *= submodel->label[0]; - } - svm_destroy_model(submodel); - svm_destroy_param(&subparam); - } - delete [](subprob.x); - delete [](subprob.y); - } - sigmoid_train(prob->l,dec_values,prob->y,probA,probB); - delete [](dec_values); - delete [](perm); -} - -// Return parameter of a Laplace distribution -double svm_svr_probability( - const svm_problem *prob, const svm_parameter *param) -{ - int i; - int nr_fold = 5; - double *ymv = Malloc(double,prob->l); - double mae = 0; - - svm_parameter newparam = *param; - newparam.probability = 0; - svm_cross_validation(prob,&newparam,nr_fold,ymv); - for(i=0;i<prob->l;i++) - { - ymv[i]=prob->y[i]-ymv[i]; - mae += fabs(ymv[i]); - } - mae /= prob->l; - double std=sqrt(2*mae*mae); - int count=0; - mae=0; - for(i=0;i<prob->l;i++) - if (fabs(ymv[i]) > 5*std) - count=count+1; - else - mae+=fabs(ymv[i]); - mae /= (prob->l-count); - info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); - delete [](ymv); - return mae; -} - - -// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data -// perm, length l, must be allocated before calling this subroutine -void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) -{ - int l = prob->l; - int max_nr_class = 16; - int nr_class = 0; - int *label = Malloc(int,max_nr_class); - int *count = Malloc(int,max_nr_class); - int *data_label = Malloc(int,l); - int i; - - for(i=0;i<l;i++) - { - int this_label = (int)prob->y[i]; - int j; - for(j=0;j<nr_class;j++) - { - if(this_label == label[j]) - { - ++count[j]; - break; - } - } - data_label[i] = j; - if(j == nr_class) - { - if(nr_class == max_nr_class) - { - max_nr_class *= 2; - label = (int *)realloc(label,max_nr_class*sizeof(int)); - count = (int *)realloc(count,max_nr_class*sizeof(int)); - } - label[nr_class] = this_label; - count[nr_class] = 1; - ++nr_class; - } - } - - int *start = Malloc(int,nr_class); - start[0] = 0; - for(i=1;i<nr_class;i++) - start[i] = start[i-1]+count[i-1]; - for(i=0;i<l;i++) - { - perm[start[data_label[i]]] = i; - ++start[data_label[i]]; - } - start[0] = 0; - for(i=1;i<nr_class;i++) - start[i] = start[i-1]+count[i-1]; - - *nr_class_ret = nr_class; - *label_ret = label; - *start_ret = start; - *count_ret = count; - delete [](data_label); -} - -// **************************************************************************************** -// Interface functions -// **************************************************************************************** -svm_model *svm_train(const svm_problem *prob, const svm_parameter *param) -{ - svm_model *model = Malloc(svm_model,1); - model->param = *param; - model->free_sv = 0; // XXX - - if(param->svm_type == ONE_CLASS || - param->svm_type == EPSILON_SVR || - param->svm_type == NU_SVR) - { - // regression or one-class-svm - model->nr_class = 2; - model->label = NULL; - model->nSV = NULL; - model->probA = NULL; model->probB = NULL; - model->sv_coef = Malloc(double *,1); - - if(param->probability && - (param->svm_type == EPSILON_SVR || - param->svm_type == NU_SVR)) - { - model->probA = Malloc(double,1); - model->probA[0] = svm_svr_probability(prob,param); - } - - decision_function f = svm_train_one(prob,param,0,0); - model->rho = Malloc(double,1); - model->rho[0] = f.rho; - - int nSV = 0; - int i; - for(i=0;i<prob->l;i++) - if(fabs(f.alpha[i]) > 0) ++nSV; - model->l = nSV; - model->SV = Malloc(svm_node *,nSV); - model->sv_coef[0] = Malloc(double,nSV); - int j = 0; - for(i=0;i<prob->l;i++) - if(fabs(f.alpha[i]) > 0) - { - model->SV[j] = prob->x[i]; - model->sv_coef[0][j] = f.alpha[i]; - ++j; - } - - delete [](f.alpha); - } - else - { - // classification - int l = prob->l; - int nr_class; - int *label = NULL; - int *start = NULL; - int *count = NULL; - int *perm = Malloc(int,l); - - // group training data of the same class - svm_group_classes(prob,&nr_class,&label,&start,&count,perm); - svm_node **x = Malloc(svm_node *,l); - int i; - for(i=0;i<l;i++) - x[i] = prob->x[perm[i]]; - - // calculate weighted C - - double *weighted_C = Malloc(double, nr_class); - for(i=0;i<nr_class;i++) - weighted_C[i] = param->C; - for(i=0;i<param->nr_weight;i++) - { - int j; - for(j=0;j<nr_class;j++) - if(param->weight_label[i] == label[j]) - break; - if(j == nr_class) - fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); - else - weighted_C[j] *= param->weight[i]; - } - - // train k*(k-1)/2 models - - bool *nonzero = Malloc(bool,l); - for(i=0;i<l;i++) - nonzero[i] = false; - decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); - - double *probA=NULL,*probB=NULL; - if (param->probability) - { - probA=Malloc(double,nr_class*(nr_class-1)/2); - probB=Malloc(double,nr_class*(nr_class-1)/2); - } - - int p = 0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - svm_problem sub_prob; - int si = start[i], sj = start[j]; - int ci = count[i], cj = count[j]; - sub_prob.l = ci+cj; - sub_prob.x = Malloc(svm_node *,sub_prob.l); - sub_prob.y = Malloc(double,sub_prob.l); - int k; - for(k=0;k<ci;k++) - { - sub_prob.x[k] = x[si+k]; - sub_prob.y[k] = +1; - } - for(k=0;k<cj;k++) - { - sub_prob.x[ci+k] = x[sj+k]; - sub_prob.y[ci+k] = -1; - } - - if(param->probability) - svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); - - f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); - for(k=0;k<ci;k++) - if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) - nonzero[si+k] = true; - for(k=0;k<cj;k++) - if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) - nonzero[sj+k] = true; - delete [](sub_prob.x); - delete [](sub_prob.y); - ++p; - } - - // build output - - model->nr_class = nr_class; - - model->label = Malloc(int,nr_class); - for(i=0;i<nr_class;i++) - model->label[i] = label[i]; - - model->rho = Malloc(double,nr_class*(nr_class-1)/2); - for(i=0;i<nr_class*(nr_class-1)/2;i++) - model->rho[i] = f[i].rho; - - if(param->probability) - { - model->probA = Malloc(double,nr_class*(nr_class-1)/2); - model->probB = Malloc(double,nr_class*(nr_class-1)/2); - for(i=0;i<nr_class*(nr_class-1)/2;i++) - { - model->probA[i] = probA[i]; - model->probB[i] = probB[i]; - } - } - else - { - model->probA=NULL; - model->probB=NULL; - } - - int total_sv = 0; - int *nz_count = Malloc(int,nr_class); - model->nSV = Malloc(int,nr_class); - for(i=0;i<nr_class;i++) - { - int nSV = 0; - for(int j=0;j<count[i];j++) - if(nonzero[start[i]+j]) - { - ++nSV; - ++total_sv; - } - model->nSV[i] = nSV; - nz_count[i] = nSV; - } - - info("Total nSV = %d\n",total_sv); - - model->l = total_sv; - model->SV = Malloc(svm_node *,total_sv); - p = 0; - for(i=0;i<l;i++) - if(nonzero[i]) model->SV[p++] = x[i]; - - int *nz_start = Malloc(int,nr_class); - nz_start[0] = 0; - for(i=1;i<nr_class;i++) - nz_start[i] = nz_start[i-1]+nz_count[i-1]; - - model->sv_coef = Malloc(double *,nr_class-1); - for(i=0;i<nr_class-1;i++) - model->sv_coef[i] = Malloc(double,total_sv); - - p = 0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - // classifier (i,j): coefficients with - // i are in sv_coef[j-1][nz_start[i]...], - // j are in sv_coef[i][nz_start[j]...] - - int si = start[i]; - int sj = start[j]; - int ci = count[i]; - int cj = count[j]; - - int q = nz_start[i]; - int k; - for(k=0;k<ci;k++) - if(nonzero[si+k]) - model->sv_coef[j-1][q++] = f[p].alpha[k]; - q = nz_start[j]; - for(k=0;k<cj;k++) - if(nonzero[sj+k]) - model->sv_coef[i][q++] = f[p].alpha[ci+k]; - ++p; - } - - delete [](label); - delete [](probA); - delete [](probB); - delete [](count); - delete [](perm); - delete [](start); - delete [](x); - delete [](weighted_C); - delete [](nonzero); - for(i=0;i<nr_class*(nr_class-1)/2;i++) - delete [](f[i].alpha); - delete [](f); - delete [](nz_count); - delete [](nz_start); - } - return model; -} - -// Stratified cross validation -void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target) -{ - int i; - int *fold_start = Malloc(int,nr_fold+1); - int l = prob->l; - int *perm = Malloc(int,l); - int nr_class; - - // stratified cv may not give leasve-one-out rate - // Each class to l folds -> some folds may have zero elements - if((param->svm_type == C_SVC || - param->svm_type == NU_SVC) && nr_fold < l) - { - int *start = NULL; - int *label = NULL; - int *count = NULL; - svm_group_classes(prob,&nr_class,&label,&start,&count,perm); - - // random shuffle and then data grouped by fold using the array perm - int *fold_count = Malloc(int,nr_fold); - int c; - int *index = Malloc(int,l); - for(i=0;i<l;i++) - index[i]=perm[i]; - for (c=0; c<nr_class; c++) - for(i=0;i<count[c];i++) - { - int j = i+rand()%(count[c]-i); - swap(index[start[c]+j],index[start[c]+i]); - } - for(i=0;i<nr_fold;i++) - { - fold_count[i] = 0; - for (c=0; c<nr_class;c++) - fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; - } - fold_start[0]=0; - for (i=1;i<=nr_fold;i++) - fold_start[i] = fold_start[i-1]+fold_count[i-1]; - for (c=0; c<nr_class;c++) - for(i=0;i<nr_fold;i++) - { - int begin = start[c]+i*count[c]/nr_fold; - int end = start[c]+(i+1)*count[c]/nr_fold; - for(int j=begin;j<end;j++) - { - perm[fold_start[i]] = index[j]; - fold_start[i]++; - } - } - fold_start[0]=0; - for (i=1;i<=nr_fold;i++) - fold_start[i] = fold_start[i-1]+fold_count[i-1]; - delete [](start); - delete [](label); - delete [](count); - delete [](index); - delete [](fold_count); - } - else - { - for(i=0;i<l;i++) perm[i]=i; - for(i=0;i<l;i++) - { - int j = i+rand()%(l-i); - swap(perm[i],perm[j]); - } - for(i=0;i<=nr_fold;i++) - fold_start[i]=i*l/nr_fold; - } - - for(i=0;i<nr_fold;i++) - { - int begin = fold_start[i]; - int end = fold_start[i+1]; - int j,k; - struct svm_problem subprob; - - subprob.l = l-(end-begin); - subprob.x = Malloc(struct svm_node*,subprob.l); - subprob.y = Malloc(double,subprob.l); - - k=0; - for(j=0;j<begin;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - ++k; - } - for(j=end;j<l;j++) - { - subprob.x[k] = prob->x[perm[j]]; - subprob.y[k] = prob->y[perm[j]]; - ++k; - } - struct svm_model *submodel = svm_train(&subprob,param); - if(param->probability && - (param->svm_type == C_SVC || param->svm_type == NU_SVC)) - { - double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); - for(j=begin;j<end;j++) - target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates); - delete [](prob_estimates); - } - else - for(j=begin;j<end;j++) - target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]); - svm_destroy_model(submodel); - delete [](subprob.x); - delete [](subprob.y); - } - delete [](fold_start); - delete [](perm); -} - - -int svm_get_svm_type(const svm_model *model) -{ - return model->param.svm_type; -} - -int svm_get_nr_class(const svm_model *model) -{ - return model->nr_class; -} - -void svm_get_labels(const svm_model *model, int* label) -{ - if (model->label != NULL) - for(int i=0;i<model->nr_class;i++) - label[i] = model->label[i]; -} - -double svm_get_svr_probability(const svm_model *model) -{ - if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && - model->probA!=NULL) - return model->probA[0]; - else - { - info("Model doesn't contain information for SVR probability inference\n"); - return 0; - } -} - -void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) -{ - if(model->param.svm_type == ONE_CLASS || - model->param.svm_type == EPSILON_SVR || - model->param.svm_type == NU_SVR) - { - double *sv_coef = model->sv_coef[0]; - double sum = 0; - for(int i=0;i<model->l;i++) - sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); - sum -= model->rho[0]; - *dec_values = sum; - } - else - { - int i; - int nr_class = model->nr_class; - int l = model->l; - - double *kvalue = Malloc(double,l); - for(i=0;i<l;i++) - kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); - - int *start = Malloc(int,nr_class); - start[0] = 0; - for(i=1;i<nr_class;i++) - start[i] = start[i-1]+model->nSV[i-1]; - - int p=0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - double sum = 0; - int si = start[i]; - int sj = start[j]; - int ci = model->nSV[i]; - int cj = model->nSV[j]; - - int k; - double *coef1 = model->sv_coef[j-1]; - double *coef2 = model->sv_coef[i]; - for(k=0;k<ci;k++) - sum += coef1[si+k] * kvalue[si+k]; - for(k=0;k<cj;k++) - sum += coef2[sj+k] * kvalue[sj+k]; - sum -= model->rho[p]; - dec_values[p] = sum; - p++; - } - - delete [](kvalue); - delete [](start); - } -} - -double svm_predict(const svm_model *model, const svm_node *x) -{ - if(model->param.svm_type == ONE_CLASS || - model->param.svm_type == EPSILON_SVR || - model->param.svm_type == NU_SVR) - { - double res; - svm_predict_values(model, x, &res); - - if(model->param.svm_type == ONE_CLASS) - return (res>0)?1:-1; - else - return res; - } - else - { - int i; - int nr_class = model->nr_class; - double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); - svm_predict_values(model, x, dec_values); - - int *vote = Malloc(int,nr_class); - for(i=0;i<nr_class;i++) - vote[i] = 0; - int pos=0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - if(dec_values[pos++] > 0) - ++vote[i]; - else - ++vote[j]; - } - - int vote_max_idx = 0; - for(i=1;i<nr_class;i++) - if(vote[i] > vote[vote_max_idx]) - vote_max_idx = i; - delete [](vote); - delete [](dec_values); - - return model->label[vote_max_idx]; - } -} - -double svm_predict_probability( - const svm_model *model, const svm_node *x, double *prob_estimates) -{ - if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && - model->probA!=NULL && model->probB!=NULL) - { - int i; - int nr_class = model->nr_class; - double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); - svm_predict_values(model, x, dec_values); - - double min_prob=1e-7; - double **pairwise_prob=Malloc(double *,nr_class); - for(i=0;i<nr_class;i++) - pairwise_prob[i]=Malloc(double,nr_class); - int k=0; - for(i=0;i<nr_class;i++) - for(int j=i+1;j<nr_class;j++) - { - pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); - pairwise_prob[j][i]=1-pairwise_prob[i][j]; - k++; - } - multiclass_probability(nr_class,pairwise_prob,prob_estimates); - - int prob_max_idx = 0; - for(i=1;i<nr_class;i++) - if(prob_estimates[i] > prob_estimates[prob_max_idx]) - prob_max_idx = i; - for(i=0;i<nr_class;i++) - delete [](pairwise_prob[i]); - delete [](dec_values); - delete [](pairwise_prob); - return model->label[prob_max_idx]; - } - else - return svm_predict(model, x); -} - -const char *svm_type_table[] = - { - "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL - }; - -const char *kernel_type_table[]= - { - //OTB's modifications - "linear","polynomial","rbf","sigmoid","precomputed","generic","composed",NULL - }; - -int svm_save_model(const char *model_file_name, const svm_model *model) -{ - FILE *fp = fopen(model_file_name,"w"); - if(fp==NULL) return -1; - - const svm_parameter& param = model->param; - - fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); - fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); - - //OTB's modifications - if( param.kernel_type == GENERIC ) - { - if( param.kernel_generic == NULL ) - { - fprintf(stderr,"generic kernel functor is not initialized\n"); - return -1; - } - //Load generic parameters - int cr = param.kernel_generic->save_parameters(&fp,"generic_kernel_parameters"); - if( cr != 0 ) - { - fprintf(stderr,"error while saving generic kernel parameters to the file %s.\n",model_file_name); - } - } - if( param.kernel_type == COMPOSED ) - { - if( param.kernel_composed == NULL ) - { - fprintf(stderr,"composed kernel functor is not initialized\n"); - return -1; - } - //Load generic parameters - int cr = param.kernel_composed->save_parameters(&fp,"composed_kernel_parameters"); - if( cr != 0 ) - { - fprintf(stderr,"error while saving composed kernel parameters to the file %s.\n",model_file_name); - } - } - - if(param.kernel_type == POLY) - fprintf(fp,"degree %d\n", param.degree); - - if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) - fprintf(fp,"gamma %g\n", param.gamma); - - if(param.kernel_type == POLY || param.kernel_type == SIGMOID) - fprintf(fp,"coef0 %g\n", param.coef0); - - int nr_class = model->nr_class; - int l = model->l; - fprintf(fp, "nr_class %d\n", nr_class); - fprintf(fp, "total_sv %d\n",l); - - if(model->rho) - { - fprintf(fp, "rho"); - for(int i=0;i<nr_class*(nr_class-1)/2;i++) - fprintf(fp," %.10g ",model->rho[i]); - fprintf(fp, "\n"); - } - - if(model->label) - { - fprintf(fp, "label"); - for(int i=0;i<nr_class;i++) - fprintf(fp," %d",model->label[i]); - fprintf(fp, "\n"); - } - - if(model->probA) // regression has probA only - { - fprintf(fp, "probA"); - for(int i=0;i<nr_class*(nr_class-1)/2;i++) - fprintf(fp," %.10g ",model->probA[i]); - fprintf(fp, "\n"); - } - if(model->probB) - { - fprintf(fp, "probB"); - for(int i=0;i<nr_class*(nr_class-1)/2;i++) - fprintf(fp," %.10g ",model->probB[i]); - fprintf(fp, "\n"); - } - - if(model->nSV) - { - fprintf(fp, "nr_sv"); - for(int i=0;i<nr_class;i++) - fprintf(fp," %d",model->nSV[i]); - fprintf(fp, "\n"); - } - - fprintf(fp, "SV\n"); - const double * const *sv_coef = model->sv_coef; - const svm_node * const *SV = model->SV; - - for(int i=0;i<l;i++) - { - for(int j=0;j<nr_class-1;j++) - fprintf(fp, "%.16g ",sv_coef[j][i]); - - const svm_node *p = SV[i]; - - if(param.kernel_type == PRECOMPUTED) - fprintf(fp,"0:%d ",(int)(p->value)); - else - while(p->index != -1) - { - fprintf(fp,"%d:%.8g ",p->index,p->value); - p++; - } - fprintf(fp, "\n"); - } - if (ferror(fp) != 0 || fclose(fp) != 0) return -1; - else return 0; -} - -svm_model *svm_load_model(const char *model_file_name, /*otb::*/GenericKernelFunctorBase * generic_kernel_functor) -{ - FILE *fp = fopen(model_file_name,"rb"); - if(fp==NULL) return NULL; - - // read parameters - - svm_model *model = Malloc(svm_model,1); - svm_parameter& param = model->param; - model->rho = NULL; - model->probA = NULL; - model->probB = NULL; - model->label = NULL; - model->nSV = NULL; - model->delete_composed = false; - - char cmd[81]; - while(1) - { - fscanf(fp,"%80s",cmd); - - if(strcmp(cmd,"svm_type")==0) - { - fscanf(fp,"%80s",cmd); - int i; - for(i=0;svm_type_table[i];i++) - { - if(strcmp(svm_type_table[i],cmd)==0) - { - param.svm_type=i; - break; - } - } - if(svm_type_table[i] == NULL) - { - fprintf(stderr,"unknown svm type.\n"); - delete [](model->rho); - delete [](model->label); - delete [](model->nSV); - delete [](model); - return NULL; - } - } - else if(strcmp(cmd,"kernel_type")==0) - { - fscanf(fp,"%80s",cmd); - int i; - for(i=0;kernel_type_table[i];i++) - { - if(strcmp(kernel_type_table[i],cmd)==0) - { - param.kernel_type=i; - break; - } - } - if(kernel_type_table[i] == NULL) - { - fprintf(stderr,"unknown kernel function.\n"); - delete [](model->rho); - delete [](model->label); - delete [](model->nSV); - delete [](model); - return NULL; - } - } - else if(strcmp(cmd,"degree")==0) - fscanf(fp,"%d",¶m.degree); - else if(strcmp(cmd,"gamma")==0) - fscanf(fp,"%lf",¶m.gamma); - else if(strcmp(cmd,"coef0")==0) - fscanf(fp,"%lf",¶m.coef0); - else if(strcmp(cmd,"nr_class")==0) - fscanf(fp,"%d",&model->nr_class); - else if(strcmp(cmd,"total_sv")==0) - fscanf(fp,"%d",&model->l); - else if(strcmp(cmd,"rho")==0) - { - int n = model->nr_class * (model->nr_class-1)/2; - model->rho = Malloc(double,n); - for(int i=0;i<n;i++) - fscanf(fp,"%lf",&model->rho[i]); - } - else if(strcmp(cmd,"label")==0) - { - int n = model->nr_class; - model->label = Malloc(int,n); - for(int i=0;i<n;i++) - fscanf(fp,"%d",&model->label[i]); - } - else if(strcmp(cmd,"probA")==0) - { - int n = model->nr_class * (model->nr_class-1)/2; - model->probA = Malloc(double,n); - for(int i=0;i<n;i++) - fscanf(fp,"%lf",&model->probA[i]); - } - else if(strcmp(cmd,"probB")==0) - { - int n = model->nr_class * (model->nr_class-1)/2; - model->probB = Malloc(double,n); - for(int i=0;i<n;i++) - fscanf(fp,"%lf",&model->probB[i]); - } - else if(strcmp(cmd,"nr_sv")==0) - { - int n = model->nr_class; - model->nSV = Malloc(int,n); - for(int i=0;i<n;i++) - fscanf(fp,"%d",&model->nSV[i]); - } - else if(strcmp(cmd,"SV")==0) - { - while(1) - { - int c = getc(fp); - if(c==EOF || c=='\n') break; - } - break; - } - //OTB's modifications - - else if(strcmp(cmd,"generic_kernel_parameters")==0) - { - if( param.kernel_type == GENERIC ) - { - if( generic_kernel_functor == NULL ) - { - fprintf(stderr,"generic kernel functor is not initialized\n",cmd); - return NULL; - } - param.kernel_generic = generic_kernel_functor; - //Load generic parameters - int cr = param.kernel_generic->load_parameters(&fp); - if( cr != 0 ) - { - fprintf(stderr,"error while loading generic kernel parameters from the file %s.\n",model_file_name); - } - } - else - { - //Read the generic_kernel_parameters line - fgets(cmd,80,fp); - } - } - else if(strcmp(cmd,"composed_kernel_parameters")==0) - { - if( param.kernel_type == COMPOSED ) - { - //Load generic parameters - delete generic_kernel_functor; - - param.kernel_composed = new ComposedKernelFunctor; - int cr = param.kernel_composed->load_parameters(&fp); - model->delete_composed = true; - //int cr = param.kernel_generic->load_parameters(&fp); - if( cr != 0 ) - { - fprintf(stderr,"error while loading composed kernel parameters from the file %s.\n",model_file_name); - } - } - else - { - //Read the composed_kernel_parameters line - fgets(cmd,80,fp); - } - } - else - { - fprintf(stderr,"unknown text in model file: [%s]\n",cmd); - delete [](model->rho); - delete [](model->label); - delete [](model->nSV); - delete [](model); - return NULL; - } - } - // read sv_coef and SV - - int elements = 0; - long pos = ftell(fp); - - while(1) - { - int c = fgetc(fp); - switch(c) - { - case '\n': - // count the '-1' element - case ':': - ++elements; - break; - case EOF: - goto out; - default: - ; - } - } - out: - fseek(fp,pos,SEEK_SET); - - int m = model->nr_class - 1; - int l = model->l; - model->sv_coef = Malloc(double *,m); - int i; - for(i=0;i<m;i++) - model->sv_coef[i] = Malloc(double,l); - model->SV = Malloc(svm_node*,l); - for(int n = 0;n<l;++n) - { - model->SV[n]=Malloc(svm_node,1); - model->SV[n]->index = -1; - model->SV[n]->value = 0.; - } - svm_node *x_space=NULL; - if(l>0) - { - x_space = Malloc(svm_node,elements); - for(int n = 0;n<elements;++n) - { - x_space[n].index = -1; - x_space[n].value = 0.; - } - } - - int j=0; - for(i=0;i<l;i++) - { - model->SV[i] = &x_space[j]; - for(int k=0;k<m;k++) - fscanf(fp,"%lf",&model->sv_coef[k][i]); - while(1) - { - int c; - do { - c = getc(fp); - if(c=='\n') goto out2; - } while(isspace(c)); - ungetc(c,fp); - fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)); - ++j; - } - out2: - x_space[j++].index = -1; - } - if (ferror(fp) != 0 || fclose(fp) != 0) return NULL; - - model->free_sv = 1; // XXX - return model; -} - -//************************************************// -// OTB's modifications : fonction entiere ajoutee // -//************************************************// -svm_model *svm_copy_model( const svm_model *model ) -{ - const svm_parameter& param = model->param; - - // instanciated the copy - svm_model *modelCpy = Malloc(svm_model,1); - svm_parameter& paramCpy = modelCpy->param; - modelCpy->rho = NULL; - modelCpy->probA = NULL; - modelCpy->probB = NULL; - modelCpy->label = NULL; - modelCpy->nSV = NULL; - modelCpy->delete_composed = false; - - // SVM type copy - paramCpy.svm_type = param.svm_type; - // Kernel type copy - paramCpy.kernel_type = param.kernel_type; - // Param copy - paramCpy.degree = param.degree; - paramCpy.gamma = param.gamma; - paramCpy.coef0 = param.coef0; - // Model variable - int nr_class = model->nr_class; - int l = model->l; - - modelCpy->nr_class = nr_class; - modelCpy->l = l; - if(model->rho) - { - int n = model->nr_class * (model->nr_class-1)/2; - modelCpy->rho = Malloc(double,n); - for(int i=0; i<n; i++) - modelCpy->rho[i] = model->rho[i]; - } - if(model->label) - { - modelCpy->label = Malloc(int,nr_class); - for(int i=0; i<nr_class; i++) - modelCpy->label[i] = model->label[i]; - } - if(model->probA) - { - int n = nr_class * (nr_class-1)/2; - modelCpy->probA = Malloc(double,n); - for(int i=0; i<n; i++) - modelCpy->probA[i] = model->probA[i]; - } - if(model->probB) - { - int n = nr_class * (nr_class-1)/2; - modelCpy->probB = Malloc(double,n); - for(int i=0; i<n; i++) - modelCpy->probB[i] = model->probB[i]; - } - if(model->nSV) - { - modelCpy->nSV = Malloc(int,nr_class); - for(int i=0;i<nr_class;i++) - modelCpy->nSV[i] = model->nSV[i]; - } - - // SV copy - const double * const *sv_coef = model->sv_coef; - const svm_node * const *SV = model->SV; - - - modelCpy->SV = Malloc(svm_node*,l); - svm_node **SVCpy = modelCpy->SV; - - modelCpy->sv_coef = Malloc(double *,nr_class-1); - - for(int i=0; i<nr_class-1; i++) - modelCpy->sv_coef[i] = Malloc(double,l); - - - // Compute the total number of SV elements. - unsigned int elements = 0; - for (int p=0; p<l; p++) - { - const svm_node *tempNode = SV[p]; - while(tempNode->index != -1) - { - tempNode++; - elements++; - } - elements++;// for -1 values - } - - if(l>0) - { - modelCpy->SV[0] = Malloc(svm_node,elements); - memcpy( modelCpy->SV[0],model->SV[0],sizeof(svm_node*)*elements); - } - svm_node *x_space = modelCpy->SV[0]; - - - int j = 0; - for(int i=0; i<l; i++) - { - // sv_coef - for(int k=0; k<nr_class-1; k++) - modelCpy->sv_coef[k][i] = sv_coef[k][i]; - - // SV - modelCpy->SV[i] = &x_space[j]; - const svm_node *p = SV[i]; - svm_node *pCpy = SVCpy[i]; - while(p->index != -1) - { - pCpy->index = p->index; - pCpy->value = p->value; - p++; - pCpy++; - j++; - } - pCpy->index = -1; - j++; - } - - // Generic kernel copy - if( param.kernel_type == GENERIC ) - { - paramCpy.kernel_generic = Malloc(GenericKernelFunctorBase, sizeof(*(param.kernel_generic))); - memcpy(paramCpy.kernel_generic,param.kernel_generic,sizeof(*(param.kernel_generic))); - } - // Composrd kernel copy - if( param.kernel_type == COMPOSED ) - { - paramCpy.kernel_composed = Malloc(ComposedKernelFunctor, 1); - *(paramCpy.kernel_composed) = *(param.kernel_composed); - } - - return modelCpy; -} - - - -void svm_destroy_model(svm_model* model) -{ - if(model->free_sv && model->l > 0) - delete []((void *)(model->SV[0])); - for(int i=0;i<model->nr_class-1;i++) - delete [](model->sv_coef[i]); - if ( model->delete_composed == true) - delete model->param.kernel_composed; - delete [](model->SV); - delete [](model->sv_coef); - delete [](model->rho); - delete [](model->label); - delete [](model->probA); - delete [](model->probB); - delete [](model->nSV); - delete [](model); -} - -void svm_destroy_param(svm_parameter* param) -{ - delete [](param->weight_label); - delete [](param->weight); -} - -const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) -{ - // svm_type - - int svm_type = param->svm_type; - if(svm_type != C_SVC && - svm_type != NU_SVC && - svm_type != ONE_CLASS && - svm_type != EPSILON_SVR && - svm_type != NU_SVR) - return "unknown svm type"; - - // kernel_type, degree - - int kernel_type = param->kernel_type; - if(kernel_type != LINEAR && - kernel_type != POLY && - kernel_type != RBF && - kernel_type != SIGMOID && - kernel_type != PRECOMPUTED && - //OTB's modifications - kernel_type != GENERIC && - kernel_type != COMPOSED) - return "unknown kernel type"; - if ( kernel_type == GENERIC ) - { - if( param->kernel_generic == NULL ) - return "Generic kernel functor not initialized"; - } - if ( kernel_type == COMPOSED ) - { - if( param->kernel_composed == NULL ) - return "Composed kernel functor not initialized"; - } - - - - if(param->degree < 0) - return "degree of polynomial kernel < 0"; - - // cache_size,eps,C,nu,p,shrinking - - if(param->cache_size <= 0) - return "cache_size <= 0"; - - if(param->eps <= 0) - return "eps <= 0"; - - if(svm_type == C_SVC || - svm_type == EPSILON_SVR || - svm_type == NU_SVR) - if(param->C <= 0) - return "C <= 0"; - - if(svm_type == NU_SVC || - svm_type == ONE_CLASS || - svm_type == NU_SVR) - if(param->nu <= 0 || param->nu > 1) - return "nu <= 0 or nu > 1"; - - if(svm_type == EPSILON_SVR) - if(param->p < 0) - return "p < 0"; - - if(param->shrinking != 0 && - param->shrinking != 1) - return "shrinking != 0 and shrinking != 1"; - - if(param->probability != 0 && - param->probability != 1) - return "probability != 0 and probability != 1"; - - if(param->probability == 1 && - svm_type == ONE_CLASS) - return "one-class SVM probability output not supported yet"; - - - // check whether nu-svc is feasible - - if(svm_type == NU_SVC) - { - int l = prob->l; - int max_nr_class = 16; - int nr_class = 0; - int *label = Malloc(int,max_nr_class); - int *count = Malloc(int,max_nr_class); - - int i; - for(i=0;i<l;i++) - { - int this_label = (int)prob->y[i]; - int j; - for(j=0;j<nr_class;j++) - if(this_label == label[j]) - { - ++count[j]; - break; - } - if(j == nr_class) - { - if(nr_class == max_nr_class) - { - max_nr_class *= 2; - label = (int *)realloc(label,max_nr_class*sizeof(int)); - count = (int *)realloc(count,max_nr_class*sizeof(int)); - } - label[nr_class] = this_label; - count[nr_class] = 1; - ++nr_class; - } - } - - for(i=0;i<nr_class;i++) - { - int n1 = count[i]; - for(int j=i+1;j<nr_class;j++) - { - int n2 = count[j]; - if(param->nu*(n1+n2)/2 > min(n1,n2)) - { - delete [](label); - delete [](count); - return "specified nu is infeasible"; - } - } - } - delete [](label); - delete [](count); - } - - return NULL; -} - -int svm_check_probability_model(const svm_model *model) -{ - return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && - model->probA!=NULL && model->probB!=NULL) || - ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && - model->probA!=NULL); -} - - -//OTB's modifications -// Methods of GenericKernelFunctorBase class -/* - namespace otb - { -*/ - -GenericKernelFunctorBase::GenericKernelFunctorBase(const GenericKernelFunctorBase& copy) -{ - *this = copy; -} - -GenericKernelFunctorBase& -GenericKernelFunctorBase::operator=(const GenericKernelFunctorBase& copy) -{ - this->m_MapParameters = copy.m_MapParameters; - this->m_Name = copy.m_Name; - return *this; -} - -int -GenericKernelFunctorBase:: -load_parameters(FILE ** pfile) -{ - int NbParams(0); - char keyword[81]; - char value[81]; - // Read functor name - fscanf(*pfile,"%80s",keyword); - m_Name = std::string(keyword); - // Read number of parameters - fscanf(*pfile,"%d",&NbParams); - // if( NbParams == 0 ) return -1; - for ( int cpt=0 ; cpt < NbParams ; cpt++) - { - fscanf(*pfile,"%80s",keyword); - fscanf(*pfile,"%80s",value); - m_MapParameters[std::string(keyword)] = std::string(value); - } - return 0; -} -int -GenericKernelFunctorBase:: -save_parameters(FILE ** pfile, const char * generic_kernel_parameters_keyword)const -{ - MapConstIterator iter=m_MapParameters.begin(); - - std::string line(generic_kernel_parameters_keyword); - std::string strNbParams; - ::otb::StringStream flux; - flux << m_MapParameters.size(); - flux >> strNbParams; - line = line + " " + m_Name + " " + strNbParams; - - // DON'T USE ITER because for a COPY ONLY, whereas map.size() IS GOOD, map.end() - // doesn't give the good answer -> SEGFAULT - // while( iter != m_MapParameters.end() ) - // { - // line = line + " " + iter->first + " " + iter->second; - // ++iter; - // } - for ( unsigned int i = 0; i<m_MapParameters.size(); i++) - { - line = line + " " + iter->first + " " + iter->second; - ++iter; - } - fprintf(*pfile,"%s\n", line.c_str()); - return 0; -} - -void -GenericKernelFunctorBase:: -print_parameters(void)const -{ - MapConstIterator iter=this->GetMapParameters().begin(); - - std::cout << "Print generic kernel parameters: "<<this->GetMapParameters().size()<<std::endl; - while( iter != this->GetMapParameters().end() ) - { - std::cout << " "<<iter->first <<" "<<iter->second<<std::endl; - ++iter; - } -} - -double -GenericKernelFunctorBase:: -dot(const svm_node *px, const svm_node *py)const -{ - double sum = 0.; - - while(px->index != -1 && py->index != -1) - { - if(px->index == py->index) - { - sum += px->value * py->value; - ++px; - ++py; - } - else - { - if(px->index > py->index) - ++py; - else - ++px; - } - } - return sum; -} - -svm_node * -GenericKernelFunctorBase:: -sub(const svm_node *px, const svm_node *py) const - /* compute the difference a-b of two sparse vectors */ - /* Note: SVECTOR lists are not followed, but only the first - SVECTOR is used */ -{ - long veclength = 1; - - const svm_node * pxbis = px; - const svm_node * pybis = py; - - while (px->index != -1 && py->index != -1) - { - ++veclength; - if(px->index == py->index) - { - ++px; - ++py; - } - else - { - if (px->index < py->index) - { - ++px; - } - else - { - ++py; - } - } - } - - while (py->index != -1) - { - ++veclength; - ++py; - } - while (px->index != -1) - { - ++veclength; - ++px; - } - - svm_node *vec; - vec = new svm_node[veclength]; - unsigned long int vecIt = 0; - - px = pxbis; - py = pybis; - - while (px->index != -1 && py->index != -1) - { - if(px->index == py->index) - { - (vec[vecIt])=(*px); - vec[vecIt].value-=py->value; - - if(vec[vecIt].value != 0) - { - ++vecIt; - } - ++px; - ++py; - - } - else - { - if(px->index > py->index) - { - (vec[vecIt])=(*py); - vec[vecIt].value*=(-1); - ++vecIt; - ++py; - } - else - { - (vec[vecIt])=(*px); - ++vecIt; - ++px; - } - } - } - - while (py->index != -1) - { - (vec[vecIt])=(*py); - vec[vecIt].value*=(-1); - ++vecIt; - ++py; - } - while (px->index != -1) - { - (vec[vecIt])=(*px); - ++vecIt; - ++px; - } - return(vec); -} - - -svm_node * -GenericKernelFunctorBase:: -add(const svm_node *px, const svm_node *py) const - /* compute the sum a+b of two sparse vectors */ - /* Note: SVECTOR lists are not followed, but only the first - SVECTOR is used */ -{ - const svm_node * pxbis = px; - const svm_node * pybis = py; - long veclength = 1; - - while (px->index != -1 && py->index != -1) - { - ++veclength; - if(px->index == py->index) - { - ++px; - ++py; - } - else - { - if (px->index < py->index) - { - ++px; - } - else - { - ++py; - } - } - } - - while (py->index != -1) - { - ++veclength; - ++py; - } - while (px->index != -1) - { - ++veclength; - ++px; - } - - svm_node *vec; - vec = new svm_node[veclength]; - unsigned long int vecIt = 0; - - px = pxbis; - py = pybis; - - while (px->index != -1 && py->index != -1) - { - if(px->index == py->index) - { - (vec[vecIt])=(*px); - vec[vecIt].value+=py->value; - if(vec[vecIt].value != 0) - { - ++vecIt; - } - ++px; - ++py; - } - else - { - if (px->index < py->index) - { - (vec[vecIt])=(*px); - ++vecIt; - ++px; - } - else - { - (vec[vecIt])=(*py); - ++vecIt; - ++py; - - } - } - } - while (py->index != -1) - { - (vec[vecIt])=(*py); - ++vecIt; - ++py; - } - while (px->index != -1) - { - (vec[vecIt])=(*px); - ++vecIt; - ++px; - } - - return(vec); -} - -// **************************************************************************************** -// ************************ ComposedKernelFunctor methods ********************/ -// **************************************************************************************** - -ComposedKernelFunctor::ComposedKernelFunctor(const ComposedKernelFunctor& copy) -{ - *this = copy; -} - -ComposedKernelFunctor& -ComposedKernelFunctor::operator=(const ComposedKernelFunctor& copy) -{ - // Call Superclass::operator= - static_cast<Superclass&>(*this) = static_cast<const Superclass&>(copy); - - // Copy Self attributes - this->m_KernelFunctorList = copy.m_KernelFunctorList; - this->m_HaveToBeDeletedList = copy.m_HaveToBeDeletedList; - this->m_PonderationList = copy.m_PonderationList; - return *this; -} - -void -ComposedKernelFunctor -::print_parameters(void)const -{ - MapConstIterator iter = this->GetMapParameters().begin(); - std::cout << "Print composed kernel parameters: "<<this->GetName()<<", "<<this->GetMapParameters().size()<<std::endl; - while( iter != this->GetMapParameters().end() ) - { - std::cout << " "<<iter->first <<" "<<iter->second<<std::endl; - ++iter; - } - std::cout<<std::endl; - std::cout<<"Composition kernels:"<<std::endl; - if (m_KernelFunctorList.size() != 0 && m_PonderationList.size() != 0 && m_KernelFunctorList.size() == m_PonderationList.size()) - { - for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) - { - std::cout<<m_KernelFunctorList[i]->GetName()<<":"<<std::endl; - std::cout<<"Associated ponderation:"<<m_PonderationList[i]<<std::endl; - m_KernelFunctorList[i]->print_parameters(); - std::cout<<std::endl; - } - } - else - { - itkGenericExceptionMacro(<<"ComposedKernelFunctor::print_param() : lists dimensions mismatch"); - } -} - - -int -ComposedKernelFunctor:: -load_parameters(FILE ** pfile) -{ - int NbParams(0); - char keyword[81]; - char value[81]; - - // Read functor name - fscanf(*pfile,"%80s",keyword); - this->SetName(std::string(keyword)); - // Read number of parameters - fscanf(*pfile,"%d",&NbParams); - - for ( int cpt=0 ; cpt < NbParams ; cpt++) - { - fscanf(*pfile,"%80s",keyword); - fscanf(*pfile,"%80s",value); - this->SetValue<std::string>(keyword, value); - } - - char tempChar[100]; - fscanf(*pfile, "%80s", tempChar); - while( strcmp(tempChar,"Ponderation")==0 || strcmp(tempChar,"list:")==0 ) - { - fscanf(*pfile, "%80s", tempChar); - } - - unsigned int i = 0; - while( strcmp(tempChar,"Kernels")!=0 ) - { - m_PonderationList.push_back(::atof(tempChar)); - fscanf(*pfile, "%80s", tempChar); - i++; - } - while( strcmp(tempChar,"Kernels")==0 || strcmp(tempChar,"list:")==0 || strcmp(tempChar,"Number")==0 || strcmp(tempChar,"of")==0 || strcmp(tempChar,"Kernels:")==0) - { - fscanf(*pfile, "%80s", tempChar); - } - int NbOfKernels = ::atoi(tempChar); - - for(unsigned int j=0; j<static_cast<unsigned int>(NbOfKernels); j++) - { - fscanf(*pfile, "%80s", tempChar); - GenericKernelFunctorBase * gen; - gen = new GenericKernelFunctorBase; - gen->load_parameters(pfile); - m_KernelFunctorList.push_back(gen); - // Add the pointer to the "Have to Deleted" pointer list - m_HaveToBeDeletedList.push_back(gen); - } - - return 0; -} - - -int -ComposedKernelFunctor:: -save_parameters(FILE ** pfile, const char * composed_kernel_parameters_keyword)const -{ - MapConstIterator iter = this->GetMapParameters().begin(); - std::string line(composed_kernel_parameters_keyword); - std::string strNbParams; - ::otb::StringStream flux; - flux << this->GetMapParameters().size(); - flux >> strNbParams; - line = line + " " + this->GetName() + " " + strNbParams; - while( iter != this->GetMapParameters().end() ) - { - line = line + " " + iter->first + " " + iter->second; - ++iter; - } - line = line + "\n" + "Ponderation list:\n"; - - for (unsigned int i = 0; i<m_PonderationList.size(); i++) - { - std::string ponde; - ::otb::StringStream flux; - flux << m_PonderationList[i]; - flux >> ponde; - line = line + " " + ponde; - } - line = line + "\n" + "Kernels list:\nNumber of Kernels: "; - std::string nbOfKernels; - ::otb::StringStream flux2; - flux2 << m_KernelFunctorList.size(); - flux2 >> nbOfKernels; - - line = line + nbOfKernels + "\n"; - fprintf(*pfile,"%s", line.c_str()); - for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) - { - m_KernelFunctorList[i]->save_parameters(pfile, "generic_kernel_parameters"); - } - - return 0; -} - -//} // namespace otb diff --git a/Utilities/otbsvm/svm.h b/Utilities/otbsvm/svm.h index e97eded539..168116212b 100644 --- a/Utilities/otbsvm/svm.h +++ b/Utilities/otbsvm/svm.h @@ -1,21 +1,22 @@ #ifndef _LIBSVM_H #define _LIBSVM_H -//OTB's modifications -//namespace otb -//{ -class GenericKernelFunctorBase; -class ComposedKernelFunctor; -//} +#define LIBSVM_VERSION 300 +/*** Begin OTB modification ***/ #include <map> #include <vector> #include "otbMacro.h" +class GenericKernelFunctorBase; +class ComposedKernelFunctor; +/*** End OTB modification ***/ #ifdef __cplusplus extern "C" { #endif +extern int libsvm_version; + struct svm_node { int index; @@ -30,210 +31,240 @@ struct svm_problem }; enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ -//OTB's modifications enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED, GENERIC, COMPOSED }; /* kernel_type */ struct svm_parameter { - int svm_type; - int kernel_type; - int degree; /* for poly */ - double gamma; /* for poly/rbf/sigmoid */ - double coef0; /* for poly/sigmoid */ - double const_coef; /* for otbSVMKernels.h. */ - double lin_coef; /* for otbSVMKernels.h. */ - char custom[500]; /* for user supplied kernel */ - //OTB's modifications : Use by the generic kernel - /*otb::*/GenericKernelFunctorBase * kernel_generic; - // Composed kernel + int svm_type; + int kernel_type; + int degree; /* for poly */ + double gamma; /* for poly/rbf/sigmoid */ + double coef0; /* for poly/sigmoid */ + + /*** Begin OTB modification ***/ + double const_coef; + double lin_coef; + char custom[500]; + GenericKernelFunctorBase * kernel_generic; ComposedKernelFunctor * kernel_composed; - - /* these are for training only */ - double cache_size; /* in MB */ - double eps; /* stopping criteria */ - double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ - int nr_weight; /* for C_SVC */ - int *weight_label; /* for C_SVC */ - double* weight; /* for C_SVC */ - double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ - double p; /* for EPSILON_SVR */ - int shrinking; /* use the shrinking heuristics */ - int probability; /* do probability estimates */ + /*** End OTB modification ***/ + + /* these are for training only */ + double cache_size; /* in MB */ + double eps; /* stopping criteria */ + double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ + int nr_weight; /* for C_SVC */ + int *weight_label; /* for C_SVC */ + double* weight; /* for C_SVC */ + double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ + double p; /* for EPSILON_SVR */ + int shrinking; /* use the shrinking heuristics */ + int probability; /* do probability estimates */ }; // // svm_model -// +// struct svm_model { - svm_parameter param; // parameter - int nr_class; // number of classes, = 2 in regression/one class svm - int l; // total #SV - svm_node **SV; // SVs (SV[l]) - double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) - double *rho; // constants in decision functions (rho[k*(k-1)/2]) - double *probA; // pariwise probability information - double *probB; - - // for classification only - - int *label; // label of each class (label[k]) - int *nSV; // number of SVs for each class (nSV[k]) - // nSV[0] + nSV[1] + ... + nSV[k-1] = l - // XXX - int free_sv; // 1 if svm_model is created by svm_load_model + struct svm_parameter param; /* parameter */ + int nr_class; /* number of classes, = 2 in regression/one class svm */ + int l; /* total #SV */ + struct svm_node **SV; /* SVs (SV[l]) */ + double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */ + double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */ + double *probA; /* pariwise probability information */ + double *probB; + + /* for classification only */ + + int *label; /* label of each class (label[k]) */ + int *nSV; /* number of SVs for each class (nSV[k]) */ + /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */ + /* XXX */ + int free_sv; /* 1 if svm_model is created by svm_load_model*/ + /* 0 if svm_model is created by svm_train */ + + /*** Begin OTB modification ***/ bool delete_composed; // to know if the composed functor was set using load method - // 0 if svm_model is created by svm_train + /*** End OTB modification ***/ }; struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); int svm_save_model(const char *model_file_name, const struct svm_model *model); +/*** Begin OTB modification ***/ +struct svm_model *svm_load_model(const char *model_file_name, GenericKernelFunctorBase* generic_kernel_functor = NULL); +struct svm_model *svm_copy_model( const svm_model *model ); +/*** End OTB modification ***/ int svm_get_svm_type(const struct svm_model *model); int svm_get_nr_class(const struct svm_model *model); void svm_get_labels(const struct svm_model *model, int *label); double svm_get_svr_probability(const struct svm_model *model); -void svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); +double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); double svm_predict(const struct svm_model *model, const struct svm_node *x); double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); -void svm_destroy_model(struct svm_model *model); +void svm_free_model_content(struct svm_model *model_ptr); +void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr); void svm_destroy_param(struct svm_parameter *param); const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); int svm_check_probability_model(const struct svm_model *model); -//OTB's modifications -struct svm_model *svm_load_model(const char *model_file_name, /*otb::*/GenericKernelFunctorBase * generic_kernel_functor = NULL); -struct svm_model *svm_copy_model( const svm_model *model ); +void svm_set_print_string_function(void (*print_func)(const char *)); + +// deprecated +// this function will be removed in future release +void svm_destroy_model(struct svm_model *model_ptr); #ifdef __cplusplus } #endif +/*** Begin OTB modification ***/ -/* -namespace otb -{ -*/ -//OTB's modifications /** \class GenericKernelFunctorBase * \brief Undocumented */ class GenericKernelFunctorBase { public: - GenericKernelFunctorBase() : m_Name("FunctorName") {}; + GenericKernelFunctorBase() : + m_Name("FunctorName") + { + } /** Recopy constructor */ - GenericKernelFunctorBase( const GenericKernelFunctorBase& copy); + GenericKernelFunctorBase(const GenericKernelFunctorBase& copy); virtual GenericKernelFunctorBase& operator=(const GenericKernelFunctorBase& copy); - virtual ~GenericKernelFunctorBase() {}; + virtual ~GenericKernelFunctorBase() + { + } - typedef GenericKernelFunctorBase Superclass; - typedef std::map<std::string,std::string> MapType; - typedef MapType::iterator MapIterator; - typedef MapType::const_iterator MapConstIterator; + typedef GenericKernelFunctorBase Superclass; + typedef std::map<std::string, std::string> MapType; + typedef MapType::iterator MapIterator; + typedef MapType::const_iterator MapConstIterator; template<class T> T GetValue(const char *option) const { - std::string Value = m_MapParameters.find(std::string(option))->second; - T lValeur; - ::otb::StringStream flux; - flux << Value; - flux >> lValeur; - return lValeur; + std::string Value = m_MapParameters.find(std::string(option))->second; + T lValeur; + ::otb::StringStream flux; + flux << Value; + flux >> lValeur; + return lValeur; } + template<class T> void SetValue(const char *option, const T & value) { - std::string lValeur; - ::otb::StringStream flux; - flux << value; - flux >> lValeur; - m_MapParameters[std::string(option)] = lValeur; + std::string lValeur; + ::otb::StringStream flux; + flux << value; + flux >> lValeur; + m_MapParameters[std::string(option)] = lValeur; } - - virtual double operator()(const svm_node * /*x*/, const svm_node * /*y*/, const svm_parameter& /*param*/)const - { - itkGenericExceptionMacro(<<"Kernel functor not definied (Null)"); - return static_cast<double>(0.); - } + virtual double operator()(const svm_node * /*x*/, const svm_node * /*y*/, const svm_parameter& /*param*/) const + { + itkGenericExceptionMacro(<<"Kernel functor not definied (Null)"); + return static_cast<double> (0.); + } /** Used for Taylor classification*/ // degree is the development degree // index is the current value // isAtEnd to indicate that it's the last possible derivation // baseValue is the constant of the formula - virtual double derivative(const svm_node * /*x*/, const svm_node * /*y*/, const svm_parameter& /*param*/, int /*degree*/, int /*index*/, bool /*isAtEnd*/, double /*constValue*/)const - { - itkGenericExceptionMacro(<<"derivative method not definied (Null)"); - return 0.; - } + virtual double derivative(const svm_node * /*x*/, const svm_node * /*y*/, const svm_parameter& /*param*/, + int /*degree*/, int /*index*/, bool /*isAtEnd*/, double /*constValue*/) const + { + itkGenericExceptionMacro(<<"derivative method not definied (Null)"); + return 0.; + } virtual int load_parameters(FILE ** pfile); - virtual int save_parameters(FILE ** pfile, const char * generic_kernel_parameters_keyword)const; + virtual int save_parameters(FILE ** pfile, const char * generic_kernel_parameters_keyword) const; - virtual void print_parameters(void)const; + virtual void print_parameters(void) const; - virtual void Update(void){ } + virtual double dot(const svm_node *px, const svm_node *py) const; - virtual double dot(const svm_node *px, const svm_node *py)const; + virtual svm_node * sub(const svm_node *px, const svm_node *py) const; - virtual svm_node * sub(const svm_node *px, const svm_node *py)const; + virtual svm_node * add(const svm_node *px, const svm_node *py) const; - virtual svm_node * add(const svm_node *px, const svm_node *py)const; + virtual void SetName(std::string name) + { + m_Name = name; + } + virtual std::string GetName(void) + { + return m_Name; + } + virtual const std::string GetName(void) const + { + return m_Name; + } - virtual void SetName(std::string name ) { m_Name = name;} - virtual std::string GetName(void) { return m_Name;} - virtual const std::string GetName(void) const { return m_Name;} + virtual void SetMapParameters(const MapType & map) + { + m_MapParameters = map; + } + + virtual const MapType & GetMapParameters() const + { + return m_MapParameters; + } - virtual void SetMapParameters(const MapType & map){ m_MapParameters = map; }; - virtual const MapType & GetMapParameters()const { return m_MapParameters; }; - virtual MapType GetMapParameters(){ return m_MapParameters; }; + virtual MapType GetMapParameters() + { + return m_MapParameters; + } private: - /** Kernel functor parameters */ - MapType m_MapParameters; + /** Kernel functor parameters */ + MapType m_MapParameters; - /** Functor label name (without space) */ - std::string m_Name; + /** Functor label name (without space) */ + std::string m_Name; }; - /** \class ComposedKernelFunctor * \brief Undocumented */ -class ComposedKernelFunctor : public GenericKernelFunctorBase +class ComposedKernelFunctor: public GenericKernelFunctorBase { public: ComposedKernelFunctor() - { - this->SetName("ComposedFunctorName"); - this->SetValue<bool>("MultiplyKernelFunctor", false); - }; + { + this->SetName("ComposedFunctorName"); + this->SetValue<bool> ("MultiplyKernelFunctor", false); + } + virtual ~ComposedKernelFunctor() - { - for(unsigned int i=0; i<m_HaveToBeDeletedList.size(); i++) - { - for(unsigned int j=0; j<m_KernelFunctorList.size(); j++) - { - if(m_KernelFunctorList[j] == m_HaveToBeDeletedList[i]) - { - delete m_KernelFunctorList[j]; - m_HaveToBeDeletedList[i] = NULL; - } - } - } - }; + { + for(unsigned int i=0; i < m_HaveToBeDeletedList.size(); i++) + { + for(unsigned int j=0; j<m_KernelFunctorList.size(); j++) + { + if(m_KernelFunctorList[j] == m_HaveToBeDeletedList[i]) + { + delete m_KernelFunctorList[j]; + m_HaveToBeDeletedList[i] = NULL; + } + } + } + } /** Recopy constructor */ ComposedKernelFunctor( const ComposedKernelFunctor& copy ); @@ -241,28 +272,28 @@ public: typedef std::vector<GenericKernelFunctorBase *> KernelListType; - virtual double operator()(const svm_node *x, const svm_node *y, const svm_parameter& param)const // = 0 + virtual double operator()(const svm_node *x, const svm_node *y, const svm_parameter& param) const { - double out = 0.; - if (m_KernelFunctorList.size() != 0 && m_PonderationList.size() != 0 && m_KernelFunctorList.size() == m_PonderationList.size()) - { - for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) - { - if ((this->GetValue<bool>("MultiplyKernelFunctor")) == false) - { - out += m_PonderationList[i]*(*m_KernelFunctorList[i])(x, y, param); - } - else - { - out *= (*m_KernelFunctorList[i])(x, y, param); - } - } - } - else - { - itkGenericExceptionMacro(<<"ComposedKernelFunctor::operator() : lists dimensions mismatch"); - } - return out; + double out = 0.; + if (m_KernelFunctorList.size() != 0 && m_PonderationList.size() != 0 && m_KernelFunctorList.size() == m_PonderationList.size()) + { + for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) + { + if ((this->GetValue<bool>("MultiplyKernelFunctor")) == false) + { + out += m_PonderationList[i]*(*m_KernelFunctorList[i])(x, y, param); + } + else + { + out *= (*m_KernelFunctorList[i])(x, y, param); + } + } + } + else + { + itkGenericExceptionMacro(<<"ComposedKernelFunctor::operator() : lists dimensions mismatch"); + } + return out; } /** Used for Taylor classification*/ @@ -271,28 +302,28 @@ public: // isAtEnd to indicate that it's the last possible derivation // baseValue is the constant of the formula virtual double derivative(const svm_node *x, const svm_node *y, const svm_parameter& param, int degree, int index, bool isAtEnd, double constValue)const - { - double out = 0.; - if (m_KernelFunctorList.size() != 0 && m_PonderationList.size() != 0 && m_KernelFunctorList.size() == m_PonderationList.size()) - { - for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) - { - if ((this->GetValue<bool>("MultiplyKernelFunctor")) == false) - { - out += m_PonderationList[i]*(m_KernelFunctorList[i]->derivative(x, y, param, degree, index, isAtEnd, constValue)); - } - else - { - itkGenericExceptionMacro(<<"derivative method not definied (Null)"); - } - } - } - else - { - itkGenericExceptionMacro(<<"ComposedKernelFunctor::operator() : lists dimensions mismatch"); - } - return out; - } + { + double out = 0.; + if (m_KernelFunctorList.size() != 0 && m_PonderationList.size() != 0 && m_KernelFunctorList.size() == m_PonderationList.size()) + { + for (unsigned int i = 0; i<m_KernelFunctorList.size(); i++) + { + if ((this->GetValue<bool>("MultiplyKernelFunctor")) == false) + { + out += m_PonderationList[i]*(m_KernelFunctorList[i]->derivative(x, y, param, degree, index, isAtEnd, constValue)); + } + else + { + itkGenericExceptionMacro(<<"derivative method not definied (Null)"); + } + } + } + else + { + itkGenericExceptionMacro(<<"ComposedKernelFunctor::operator() : lists dimensions mismatch"); + } + return out; + } virtual int load_parameters(FILE ** pfile); @@ -300,50 +331,56 @@ public: virtual void print_parameters(void)const; - //virtual void Update(void){}; + /** Set/Get the SVM Model vector for the composed kernel */ + KernelListType GetKernelFunctorList() + {return m_KernelFunctorList;}; + void SetKernelFunctorList(KernelListType kernelFunctorList) + {m_KernelFunctorList = kernelFunctorList;}; - /** Set/Get the SVM Model vector for the composed kernel */ - KernelListType GetKernelFunctorList(){ return m_KernelFunctorList; }; - void SetKernelFunctorList(KernelListType kernelFunctorList){ m_KernelFunctorList = kernelFunctorList; }; // Add 1 element to the end of the list - void AddKernelFunctorModelToKernelList(GenericKernelFunctorBase * kernelfunctor){ m_KernelFunctorList.push_back(kernelfunctor); }; + void AddKernelFunctorModelToKernelList(GenericKernelFunctorBase * kernelfunctor) + {m_KernelFunctorList.push_back(kernelfunctor);}; /** Generic kernel functors that have to be deleted. */ - KernelListType GetHaveToBeDeletedList(){ return m_HaveToBeDeletedList; }; - void SetHaveToBeDeletedList(KernelListType kernelFunctorList){ m_HaveToBeDeletedList = kernelFunctorList; }; + KernelListType GetHaveToBeDeletedList() + {return m_HaveToBeDeletedList;}; + void SetHaveToBeDeletedList(KernelListType kernelFunctorList) + {m_HaveToBeDeletedList = kernelFunctorList;}; // Add 1 element to the end of the list - void AddKernelFunctorModelToDeleteKernelList(GenericKernelFunctorBase * kernelfunctor){ m_HaveToBeDeletedList.push_back(kernelfunctor); }; + void AddKernelFunctorModelToDeleteKernelList(GenericKernelFunctorBase * kernelfunctor) + {m_HaveToBeDeletedList.push_back(kernelfunctor);}; /** Set/Get the ponderation list to apply to each svm_model of the composed kernel */ - std::vector<double> GetPonderationList(){ return m_PonderationList; }; - void SetPonderationModelList(const std::vector<double> & list){ m_PonderationList = list; }; + std::vector<double> GetPonderationList() + {return m_PonderationList;}; + void SetPonderationModelList(const std::vector<double> & list) + {m_PonderationList = list;}; // Add 1 element to the end of the list - void AddPonderationToPonderationList(const double & pond){ m_PonderationList.push_back(pond); }; + void AddPonderationToPonderationList(const double & pond) + {m_PonderationList.push_back(pond);}; - /** Set/Get the boolean to know which operation has to be done with the kernel functors. */ - void SetMultiplyKernelFunctor( bool val ){ this->SetValue<bool>("MultiplyKernelFunctor", val); }; - bool GetMultiplyKernelFunctor(){ return (this->GetValue<bool>("MultiplyKernelFunctor")); }; + /** Set/Get the boolean to know which operation has to be done with the kernel functors. */ + void SetMultiplyKernelFunctor( bool val ) + {this->SetValue<bool>("MultiplyKernelFunctor", val);}; + bool GetMultiplyKernelFunctor() + {return (this->GetValue<bool>("MultiplyKernelFunctor"));}; private: - typedef GenericKernelFunctorBase::MapType MapType; - typedef GenericKernelFunctorBase::MapIterator MapIterator; - typedef GenericKernelFunctorBase::MapConstIterator MapConstIterator; - + typedef GenericKernelFunctorBase::MapType MapType; + typedef GenericKernelFunctorBase::MapIterator MapIterator; + typedef GenericKernelFunctorBase::MapConstIterator MapConstIterator; - /** Generic kernel functors that composed kernel */ - KernelListType m_KernelFunctorList; + /** Generic kernel functors that composed kernel */ + KernelListType m_KernelFunctorList; /** Generic kernel functors that have to be deleted. - * This list was made for the load_parameters methods where you set new functors using new. - * But, in other cases, functor can be added with reference. Thus, we need to know which ones have to be deleted. */ - KernelListType m_HaveToBeDeletedList; - /** Ponderation list to apply to each svm_model of the composed kernel*/ - std::vector<double> m_PonderationList; - + * This list was made for the load_parameters methods where you set new functors using new. + * But, in other cases, functor can be added with reference. Thus, we need to know which ones have to be deleted. */ + KernelListType m_HaveToBeDeletedList; + /** Ponderation list to apply to each svm_model of the composed kernel*/ + std::vector<double> m_PonderationList; }; - - -//} // namespace otb +/*** End OTB modification ***/ #endif /* _LIBSVM_H */ -- GitLab