diff --git a/Applications/Classification/otbTrainSVMImagesClassifier.cxx b/Applications/Classification/otbTrainSVMImagesClassifier.cxx index 40a3e573673d4dd55cec2f4714c37628e6c87c69..1fef88e97ca8554f9892b1895834a4f133e07377 100644 --- a/Applications/Classification/otbTrainSVMImagesClassifier.cxx +++ b/Applications/Classification/otbTrainSVMImagesClassifier.cxx @@ -141,29 +141,28 @@ private: { AddParameter(ParameterType_InputImageList, "il", "Input Image List"); - SetParameterDescription("il","a list of input images."); + SetParameterDescription("il", "a list of input images."); AddParameter(ParameterType_InputVectorDataList, "vd", "Vector Data List"); - SetParameterDescription("vd","a list of vector data sample used to train the estimator."); + SetParameterDescription("vd", "a list of vector data sample used to train the estimator."); AddParameter(ParameterType_Filename, "dem", "DEM repository"); MandatoryOff("dem"); - SetParameterDescription("dem","path to SRTM repository"); + SetParameterDescription("dem", "path to SRTM repository"); AddParameter(ParameterType_Filename, "imstat", "XML image statistics file"); MandatoryOff("imstat"); - SetParameterDescription("imstat","filename of an XML file containing mean and standard deviation of input images."); + SetParameterDescription("imstat", "filename of an XML file containing mean and standard deviation of input images."); AddParameter(ParameterType_Filename, "out", "Output SVM model"); - SetParameterDescription("out","Output SVM model"); + SetParameterDescription("out", "Output SVM model"); AddParameter(ParameterType_Float, "m", "Margin for SVM learning"); MandatoryOff("m"); - SetParameterDescription("m","Margin for SVM learning"); + SetParameterDescription("m", "Margin for SVM learning"); AddParameter(ParameterType_Int, "b", "Balance and grow the training set"); SetParameterDescription("b", "Balance and grow the training set"); MandatoryOff("b"); - AddParameter(ParameterType_Choice, "k", - "SVM Kernel Type"); + AddParameter(ParameterType_Choice, "k", "SVM Kernel Type"); MandatoryOff("k"); - AddChoice("k.linear", "Linear"); - AddChoice("k.rbf", "Neareast Neighbor"); - AddChoice("k.poly", "Polynomial"); + AddChoice("k.linear", "Linear"); + AddChoice("k.rbf", "Neareast Neighbor"); + AddChoice("k.poly", "Polynomial"); AddChoice("k.sigmoid", "Sigmoid"); SetParameterString("k", "linear"); SetParameterDescription("k", "SVM Kernel Type"); @@ -175,17 +174,15 @@ private: MandatoryOff("mv"); SetParameterInt("mv", -1); SetParameterDescription("mv", "Maximum size of the validation sample (default = -1)"); - AddParameter(ParameterType_Float, "vtr", - "training and validation sample ratio"); + AddParameter(ParameterType_Float, "vtr", "training and validation sample ratio"); SetParameterDescription("vtr", - "Ratio between training and validation sample (0.0 = all training, 1.0 = all validation) default = 0.5"); + "Ratio between training and validation sample (0.0 = all training, 1.0 = all validation) default = 0.5"); MandatoryOff("vtr"); SetParameterFloat("vtr", 0.5); AddParameter(ParameterType_Empty, "opt", "parameters optimization"); MandatoryOff("opt"); - SetParameterDescription("opt","SVM parameters optimization"); - AddParameter(ParameterType_Filename, "vfn", - "Name of the discrimination field"); + SetParameterDescription("opt", "SVM parameters optimization"); + AddParameter(ParameterType_Filename, "vfn", "Name of the discrimination field"); MandatoryOff("vfn"); SetParameterDescription("vfn", "Name of the field using to discriminate class in the vector data files"); SetParameterString("vfn", "Class");