From 88488484e305dbd29fbf9b7adeca0f9f5cabc8ad Mon Sep 17 00:00:00 2001
From: OTB Bot <otbbot@orfeo-toolbox.org>
Date: Wed, 20 Mar 2013 19:57:48 +0100
Subject: [PATCH] STYLE

---
 ...tbTrainMachineLearningImagesClassifier.cxx | 296 +++++++++---------
 .../OpenCV/otbBoostMachineLearningModel.h     |   2 +-
 ...otbKNearestNeighborsMachineLearningModel.h |   2 +-
 .../OpenCV/otbLibSVMMachineLearningModel.h    |   2 +-
 .../OpenCV/otbMachineLearningModel.txx        |   4 +-
 .../OpenCV/otbMachineLearningUtils.cxx        |   2 +-
 .../UtilitiesAdapters/OpenCV/otbOpenCVUtils.h |  80 ++---
 .../otbRandomForestsMachineLearningModel.h    |   2 +-
 .../otbRandomForestsMachineLearningModel.txx  |   6 +-
 .../OpenCV/otbSVMMachineLearningModel.h       |   2 +-
 .../OpenCV/otbSVMMachineLearningModel.txx     |  12 +-
 11 files changed, 205 insertions(+), 205 deletions(-)

diff --git a/Applications/Classification/otbTrainMachineLearningImagesClassifier.cxx b/Applications/Classification/otbTrainMachineLearningImagesClassifier.cxx
index a2fb527152..c03515a87d 100644
--- a/Applications/Classification/otbTrainMachineLearningImagesClassifier.cxx
+++ b/Applications/Classification/otbTrainMachineLearningImagesClassifier.cxx
@@ -185,10 +185,10 @@ private:
 
 
     AddParameter(ParameterType_Choice, "classifier", "Classifier to used.");
-	SetParameterDescription("classifier", "Choice of the classifier to used.");
+       SetParameterDescription("classifier", "Choice of the classifier to used.");
 
-	//Group LibSVM
-	AddChoice("classifier.libsvm", "LibSVM classifier");
+       //Group LibSVM
+       AddChoice("classifier.libsvm", "LibSVM classifier");
     //AddParameter(ParameterType_Group,"libsvm","LibSVM classifier parameters");
     SetParameterDescription("classifier.libsvm","This group of parameters allows to set SVM classifier parameters.");
     AddParameter(ParameterType_Choice, "classifier.libsvm.k", "SVM Kernel Type");
@@ -207,41 +207,41 @@ private:
 
     //Group SVM (openCV)
     AddChoice("classifier.svm", "SVM classifier (OpenCV)");
-	//AddParameter(ParameterType_Group,"svm","SVM classifier parameters (OpenCV)");
-	SetParameterDescription("classifier.svm","This group of parameters allows to set SVM classifier parameters.");
-	AddParameter(ParameterType_Choice, "classifier.svm.m", "SVM Model Type");
-	AddChoice("classifier.svm.m.csvc", "C support vector classification");
-	AddChoice("classifier.svm.m.nusvc", "Nu support vector classification");
-	AddChoice("classifier.svm.m.oneclass", "Distribution estimation (One Class SVM)");
-	AddChoice("classifier.svm.m.epssvr", "Epsilon Support Vector Regression");
-	AddChoice("classifier.svm.m.nusvr", "Nu Support Vector Regression");
-	SetParameterString("classifier.svm.m", "csvc");
-	SetParameterDescription("classifier.svm.m", "Type of SVM formulation.");
-	AddParameter(ParameterType_Choice, "classifier.svm.k", "SVM Kernel Type");
-	AddChoice("classifier.svm.k.linear", "Linear");
-	AddChoice("classifier.svm.k.rbf", "Gaussian radial basis function");
-	AddChoice("classifier.svm.k.poly", "Polynomial");
-	AddChoice("classifier.svm.k.sigmoid", "Sigmoid");
-	SetParameterString("classifier.svm.k", "linear");
-	SetParameterDescription("classifier.svm.k", "SVM Kernel Type.");
-	AddParameter(ParameterType_Float, "classifier.svm.c", "Cost parameter C.");
-	SetParameterFloat("classifier.svm.c", 1.0);
-	SetParameterDescription("classifier.svm.c", "SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.");
-	AddParameter(ParameterType_Float, "classifier.svm.nu", "Parameter nu of a SVM optimization problem (NU_SVC / ONE_CLASS / NU_SVR).");
-	SetParameterFloat("classifier.svm.nu", 0.0);
-	SetParameterDescription("classifier.svm.nu", "Parameter nu of a SVM optimization problem.");
-	AddParameter(ParameterType_Float, "classifier.svm.p", "Parameter epsilon of a SVM optimization problem (EPS_SVR).");
-	SetParameterFloat("classifier.svm.p", 0.0);
-	SetParameterDescription("classifier.svm.p", "Parameter epsilon of a SVM optimization problem (EPS_SVR).");
-	AddParameter(ParameterType_Float, "classifier.svm.coef0", "Parameter coef0 of a kernel function (POLY / SIGMOID).");
-	SetParameterFloat("classifier.svm.coef0", 0.0);
-	SetParameterDescription("classifier.svm.coef0", "Parameter coef0 of a kernel function (POLY / SIGMOID).");
-	AddParameter(ParameterType_Float, "classifier.svm.gamma", "Parameter gamma of a kernel function (POLY / RBF / SIGMOID).");
-	SetParameterFloat("classifier.svm.gamma", 1.0);
-	SetParameterDescription("classifier.svm.gamma", "Parameter gamma of a kernel function (POLY / RBF / SIGMOID).");
-	AddParameter(ParameterType_Float, "classifier.svm.degree", "Parameter degree of a kernel function (POLY).");
-	SetParameterFloat("classifier.svm.degree", 0.0);
-	SetParameterDescription("classifier.svm.degree", "Parameter degree of a kernel function (POLY).");
+       //AddParameter(ParameterType_Group,"svm","SVM classifier parameters (OpenCV)");
+       SetParameterDescription("classifier.svm","This group of parameters allows to set SVM classifier parameters.");
+       AddParameter(ParameterType_Choice, "classifier.svm.m", "SVM Model Type");
+       AddChoice("classifier.svm.m.csvc", "C support vector classification");
+       AddChoice("classifier.svm.m.nusvc", "Nu support vector classification");
+       AddChoice("classifier.svm.m.oneclass", "Distribution estimation (One Class SVM)");
+       AddChoice("classifier.svm.m.epssvr", "Epsilon Support Vector Regression");
+       AddChoice("classifier.svm.m.nusvr", "Nu Support Vector Regression");
+       SetParameterString("classifier.svm.m", "csvc");
+       SetParameterDescription("classifier.svm.m", "Type of SVM formulation.");
+       AddParameter(ParameterType_Choice, "classifier.svm.k", "SVM Kernel Type");
+       AddChoice("classifier.svm.k.linear", "Linear");
+       AddChoice("classifier.svm.k.rbf", "Gaussian radial basis function");
+       AddChoice("classifier.svm.k.poly", "Polynomial");
+       AddChoice("classifier.svm.k.sigmoid", "Sigmoid");
+       SetParameterString("classifier.svm.k", "linear");
+       SetParameterDescription("classifier.svm.k", "SVM Kernel Type.");
+       AddParameter(ParameterType_Float, "classifier.svm.c", "Cost parameter C.");
+       SetParameterFloat("classifier.svm.c", 1.0);
+       SetParameterDescription("classifier.svm.c", "SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.");
+       AddParameter(ParameterType_Float, "classifier.svm.nu", "Parameter nu of a SVM optimization problem (NU_SVC / ONE_CLASS / NU_SVR).");
+       SetParameterFloat("classifier.svm.nu", 0.0);
+       SetParameterDescription("classifier.svm.nu", "Parameter nu of a SVM optimization problem.");
+       AddParameter(ParameterType_Float, "classifier.svm.p", "Parameter epsilon of a SVM optimization problem (EPS_SVR).");
+       SetParameterFloat("classifier.svm.p", 0.0);
+       SetParameterDescription("classifier.svm.p", "Parameter epsilon of a SVM optimization problem (EPS_SVR).");
+       AddParameter(ParameterType_Float, "classifier.svm.coef0", "Parameter coef0 of a kernel function (POLY / SIGMOID).");
+       SetParameterFloat("classifier.svm.coef0", 0.0);
+       SetParameterDescription("classifier.svm.coef0", "Parameter coef0 of a kernel function (POLY / SIGMOID).");
+       AddParameter(ParameterType_Float, "classifier.svm.gamma", "Parameter gamma of a kernel function (POLY / RBF / SIGMOID).");
+       SetParameterFloat("classifier.svm.gamma", 1.0);
+       SetParameterDescription("classifier.svm.gamma", "Parameter gamma of a kernel function (POLY / RBF / SIGMOID).");
+       AddParameter(ParameterType_Float, "classifier.svm.degree", "Parameter degree of a kernel function (POLY).");
+       SetParameterFloat("classifier.svm.degree", 0.0);
+       SetParameterDescription("classifier.svm.degree", "Parameter degree of a kernel function (POLY).");
 
     AddRANDParameter();
     // Doc example parameter settings
@@ -336,124 +336,124 @@ private:
 
   void TrainLibSVM(ListSampleType::Pointer trainingListSample, LabelListSampleType::Pointer trainingLabeledListSample)
   {
-	  LibSVMType::Pointer libSVMClassifier = LibSVMType::New();
-	  libSVMClassifier->SetInputListSample(trainingListSample);
-	  libSVMClassifier->SetTargetListSample(trainingLabeledListSample);
-	  //SVM Option
-	  //TODO : Add other options ?
-	  if (IsParameterEnabled("classifier.libsvm.opt"))
-	  {
-		  libSVMClassifier->SetParameterOptimization(true);
-	  }
-	  libSVMClassifier->SetC(GetParameterFloat("classifier.libsvm.c"));
-
-	  switch (GetParameterInt("classifier.libsvm.k"))
-	  {
-		  case 0: // LINEAR
-			  libSVMClassifier->SetKernelType(LINEAR);
-			break;
-		  case 1: // RBF
-			  libSVMClassifier->SetKernelType(RBF);
-			break;
-		  case 2: // POLY
-			  libSVMClassifier->SetKernelType(POLY);
-			break;
-		  case 3: // SIGMOID
-			  libSVMClassifier->SetKernelType(SIGMOID);
-			break;
-		  default: // DEFAULT = LINEAR
-			  libSVMClassifier->SetKernelType(LINEAR);
-			break;
-	  }
-	  libSVMClassifier->Train();
-	  libSVMClassifier->Save(GetParameterString("io.out"));
-	  //otbAppLogINFO( "Learning done -> Final SVM accuracy: " << libSVMClassifier->GetFinalCrossValidationAccuracy() << std::endl);
+         LibSVMType::Pointer libSVMClassifier = LibSVMType::New();
+         libSVMClassifier->SetInputListSample(trainingListSample);
+         libSVMClassifier->SetTargetListSample(trainingLabeledListSample);
+         //SVM Option
+         //TODO : Add other options ?
+         if (IsParameterEnabled("classifier.libsvm.opt"))
+         {
+                libSVMClassifier->SetParameterOptimization(true);
+         }
+         libSVMClassifier->SetC(GetParameterFloat("classifier.libsvm.c"));
+
+         switch (GetParameterInt("classifier.libsvm.k"))
+         {
+                case 0: // LINEAR
+                       libSVMClassifier->SetKernelType(LINEAR);
+                     break;
+                case 1: // RBF
+                       libSVMClassifier->SetKernelType(RBF);
+                     break;
+                case 2: // POLY
+                       libSVMClassifier->SetKernelType(POLY);
+                     break;
+                case 3: // SIGMOID
+                       libSVMClassifier->SetKernelType(SIGMOID);
+                     break;
+                default: // DEFAULT = LINEAR
+                       libSVMClassifier->SetKernelType(LINEAR);
+                     break;
+         }
+         libSVMClassifier->Train();
+         libSVMClassifier->Save(GetParameterString("io.out"));
+         //otbAppLogINFO( "Learning done -> Final SVM accuracy: " << libSVMClassifier->GetFinalCrossValidationAccuracy() << std::endl);
   }
 
   void ClassifyLibSVM(ListSampleType::Pointer validationListSample, LabelListSampleType::Pointer predictedList)
   {
-	  //Classification
-	  LibSVMType::Pointer libSVMClassifier = LibSVMType::New();
-	  libSVMClassifier->Load(GetParameterString("io.out"));
-	  libSVMClassifier->SetInputListSample(validationListSample);
-	  libSVMClassifier->SetTargetListSample(predictedList);
-	  libSVMClassifier->PredictAll();
+         //Classification
+         LibSVMType::Pointer libSVMClassifier = LibSVMType::New();
+         libSVMClassifier->Load(GetParameterString("io.out"));
+         libSVMClassifier->SetInputListSample(validationListSample);
+         libSVMClassifier->SetTargetListSample(predictedList);
+         libSVMClassifier->PredictAll();
   }
 
   void TrainSVM(ListSampleType::Pointer trainingListSample, LabelListSampleType::Pointer trainingLabeledListSample)
   {
-	  std::cout<<"svm open CV"<<std::endl;
-	  SVMType::Pointer SVMClassifier = SVMType::New();
-	  SVMClassifier->SetInputListSample(trainingListSample);
-	  SVMClassifier->SetTargetListSample(trainingLabeledListSample);
-	  switch (GetParameterInt("classifier.svm.k"))
-	  {
-	  	  case 0: // LINEAR
-	  		  SVMClassifier->SetKernelType(CvSVM::LINEAR);
-	  		  std::cout<<"CvSVM::LINEAR = "<<CvSVM::LINEAR<<std::endl;
-	  		break;
-	  	  case 1: // RBF
-			  SVMClassifier->SetKernelType(CvSVM::RBF);
-			  std::cout<<"CvSVM::RBF = "<<CvSVM::RBF<<std::endl;
-			break;
-		  case 2: // POLY
-			  SVMClassifier->SetKernelType(CvSVM::POLY);
-			  std::cout<<"CvSVM::POLY = "<<CvSVM::POLY<<std::endl;
-			break;
-		  case 3: // SIGMOID
-			  SVMClassifier->SetKernelType(CvSVM::SIGMOID);
-			  std::cout<<"CvSVM::SIGMOID = "<<CvSVM::SIGMOID<<std::endl;
-			break;
-		  default: // DEFAULT = LINEAR
-			  SVMClassifier->SetKernelType(CvSVM::LINEAR);
-			  std::cout<<"CvSVM::LINEAR = "<<CvSVM::LINEAR<<std::endl;
-			break;
-	  }
-	  switch (GetParameterInt("classifier.svm.m"))
-	  {
-		  case 0: // C_SVC
-			  SVMClassifier->SetSVMType(CvSVM::C_SVC);
-			  std::cout<<"CvSVM::C_SVC = "<<CvSVM::C_SVC<<std::endl;
-			break;
-		  case 1: // NU_SVC
-			  SVMClassifier->SetSVMType(CvSVM::NU_SVC);
-			  std::cout<<"CvSVM::NU_SVC = "<<CvSVM::NU_SVC<<std::endl;
-			break;
-		  case 2: // ONE_CLASS
-			  SVMClassifier->SetSVMType(CvSVM::ONE_CLASS);
-			  std::cout<<"CvSVM::ONE_CLASS = "<<CvSVM::ONE_CLASS<<std::endl;
-			break;
-		  case 3: // EPS_SVR
-			  SVMClassifier->SetSVMType(CvSVM::EPS_SVR);
-			  std::cout<<"CvSVM::EPS_SVR = "<<CvSVM::EPS_SVR<<std::endl;
-			break;
-		  case 4: // NU_SVR
-			  SVMClassifier->SetSVMType(CvSVM::NU_SVR);
-			  std::cout<<"CvSVM::NU_SVR = "<<CvSVM::NU_SVR<<std::endl;
-			break;
-		  default: // DEFAULT = C_SVC
-			  SVMClassifier->SetSVMType(CvSVM::C_SVC);
-			  std::cout<<"CvSVM::C_SVC = "<<CvSVM::C_SVC<<std::endl;
-			break;
-	  }
-	  SVMClassifier->SetC(GetParameterFloat("classifier.svm.c"));
-	  SVMClassifier->SetNu(GetParameterFloat("classifier.svm.nu"));
-	  SVMClassifier->SetP(GetParameterFloat("classifier.svm.p"));
-	  SVMClassifier->SetCoef0(GetParameterFloat("classifier.svm.coef0"));
-	  SVMClassifier->SetGamma(GetParameterFloat("classifier.svm.gamma"));
-	  SVMClassifier->SetDegree(GetParameterFloat("classifier.svm.degree"));
-	  SVMClassifier->Train();
-	  SVMClassifier->Save(GetParameterString("io.out"));
+         std::cout<<"svm open CV"<<std::endl;
+         SVMType::Pointer SVMClassifier = SVMType::New();
+         SVMClassifier->SetInputListSample(trainingListSample);
+         SVMClassifier->SetTargetListSample(trainingLabeledListSample);
+         switch (GetParameterInt("classifier.svm.k"))
+         {
+                  case 0: // LINEAR
+                         SVMClassifier->SetKernelType(CvSVM::LINEAR);
+                         std::cout<<"CvSVM::LINEAR = "<<CvSVM::LINEAR<<std::endl;
+                       break;
+                  case 1: // RBF
+                       SVMClassifier->SetKernelType(CvSVM::RBF);
+                       std::cout<<"CvSVM::RBF = "<<CvSVM::RBF<<std::endl;
+                     break;
+                case 2: // POLY
+                       SVMClassifier->SetKernelType(CvSVM::POLY);
+                       std::cout<<"CvSVM::POLY = "<<CvSVM::POLY<<std::endl;
+                     break;
+                case 3: // SIGMOID
+                       SVMClassifier->SetKernelType(CvSVM::SIGMOID);
+                       std::cout<<"CvSVM::SIGMOID = "<<CvSVM::SIGMOID<<std::endl;
+                     break;
+                default: // DEFAULT = LINEAR
+                       SVMClassifier->SetKernelType(CvSVM::LINEAR);
+                       std::cout<<"CvSVM::LINEAR = "<<CvSVM::LINEAR<<std::endl;
+                     break;
+         }
+         switch (GetParameterInt("classifier.svm.m"))
+         {
+                case 0: // C_SVC
+                       SVMClassifier->SetSVMType(CvSVM::C_SVC);
+                       std::cout<<"CvSVM::C_SVC = "<<CvSVM::C_SVC<<std::endl;
+                     break;
+                case 1: // NU_SVC
+                       SVMClassifier->SetSVMType(CvSVM::NU_SVC);
+                       std::cout<<"CvSVM::NU_SVC = "<<CvSVM::NU_SVC<<std::endl;
+                     break;
+                case 2: // ONE_CLASS
+                       SVMClassifier->SetSVMType(CvSVM::ONE_CLASS);
+                       std::cout<<"CvSVM::ONE_CLASS = "<<CvSVM::ONE_CLASS<<std::endl;
+                     break;
+                case 3: // EPS_SVR
+                       SVMClassifier->SetSVMType(CvSVM::EPS_SVR);
+                       std::cout<<"CvSVM::EPS_SVR = "<<CvSVM::EPS_SVR<<std::endl;
+                     break;
+                case 4: // NU_SVR
+                       SVMClassifier->SetSVMType(CvSVM::NU_SVR);
+                       std::cout<<"CvSVM::NU_SVR = "<<CvSVM::NU_SVR<<std::endl;
+                     break;
+                default: // DEFAULT = C_SVC
+                       SVMClassifier->SetSVMType(CvSVM::C_SVC);
+                       std::cout<<"CvSVM::C_SVC = "<<CvSVM::C_SVC<<std::endl;
+                     break;
+         }
+         SVMClassifier->SetC(GetParameterFloat("classifier.svm.c"));
+         SVMClassifier->SetNu(GetParameterFloat("classifier.svm.nu"));
+         SVMClassifier->SetP(GetParameterFloat("classifier.svm.p"));
+         SVMClassifier->SetCoef0(GetParameterFloat("classifier.svm.coef0"));
+         SVMClassifier->SetGamma(GetParameterFloat("classifier.svm.gamma"));
+         SVMClassifier->SetDegree(GetParameterFloat("classifier.svm.degree"));
+         SVMClassifier->Train();
+         SVMClassifier->Save(GetParameterString("io.out"));
   }
 
   void ClassifySVM(ListSampleType::Pointer validationListSample, LabelListSampleType::Pointer predictedList)
   {
-	  //Classification
-	  SVMType::Pointer SVMClassifier = SVMType::New();
-	  SVMClassifier->Load(GetParameterString("io.out"));
-	  SVMClassifier->SetInputListSample(validationListSample);
-	  SVMClassifier->SetTargetListSample(predictedList);
-	  SVMClassifier->PredictAll();
+         //Classification
+         SVMType::Pointer SVMClassifier = SVMType::New();
+         SVMClassifier->Load(GetParameterString("io.out"));
+         SVMClassifier->SetInputListSample(validationListSample);
+         SVMClassifier->SetTargetListSample(predictedList);
+         SVMClassifier->PredictAll();
   }
 
   void DoExecute()
@@ -616,13 +616,13 @@ private:
     const std::string classifierType = GetParameterString("classifier");
     if (classifierType == "libsvm")
     {
-    	TrainLibSVM(trainingListSample, trainingLabeledListSample);
-    	ClassifyLibSVM(validationListSample, predictedList);
+           TrainLibSVM(trainingListSample, trainingLabeledListSample);
+           ClassifyLibSVM(validationListSample, predictedList);
     }
     else if (classifierType == "svm")
     {
-    	TrainSVM(trainingListSample, trainingLabeledListSample);
-    	ClassifySVM(validationListSample, predictedList);
+           TrainSVM(trainingListSample, trainingLabeledListSample);
+           ClassifySVM(validationListSample, predictedList);
     }
 
     //--------------------------
diff --git a/Code/UtilitiesAdapters/OpenCV/otbBoostMachineLearningModel.h b/Code/UtilitiesAdapters/OpenCV/otbBoostMachineLearningModel.h
index de9244b25b..dfa7b12eed 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbBoostMachineLearningModel.h
+++ b/Code/UtilitiesAdapters/OpenCV/otbBoostMachineLearningModel.h
@@ -26,7 +26,7 @@
 
 //include opencv
 #include <cv.h>       // opencv general include file
-#include <ml.h>		  // opencv machine learning include file
+#include <ml.h>                // opencv machine learning include file
 
 namespace otb
 {
diff --git a/Code/UtilitiesAdapters/OpenCV/otbKNearestNeighborsMachineLearningModel.h b/Code/UtilitiesAdapters/OpenCV/otbKNearestNeighborsMachineLearningModel.h
index c383677faa..3b618d5dc4 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbKNearestNeighborsMachineLearningModel.h
+++ b/Code/UtilitiesAdapters/OpenCV/otbKNearestNeighborsMachineLearningModel.h
@@ -26,7 +26,7 @@
 
 //include opencv
 #include <opencv.hpp>       // opencv general include file
-#include <ml/ml.hpp>		  // opencv machine learning include file
+#include <ml/ml.hpp>                // opencv machine learning include file
 
 namespace otb
 {
diff --git a/Code/UtilitiesAdapters/OpenCV/otbLibSVMMachineLearningModel.h b/Code/UtilitiesAdapters/OpenCV/otbLibSVMMachineLearningModel.h
index ae90aa2203..75239759a6 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbLibSVMMachineLearningModel.h
+++ b/Code/UtilitiesAdapters/OpenCV/otbLibSVMMachineLearningModel.h
@@ -26,7 +26,7 @@
 
 //include opencv
 //#include <opencv.hpp>       // opencv general include file
-//#include <ml/ml.hpp>		  // opencv machine learning include file
+//#include <ml/ml.hpp>                // opencv machine learning include file
 
 // SVM estimator
 #include "otbSVMSampleListModelEstimator.h"
diff --git a/Code/UtilitiesAdapters/OpenCV/otbMachineLearningModel.txx b/Code/UtilitiesAdapters/OpenCV/otbMachineLearningModel.txx
index 4eef56e258..9281aa2653 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbMachineLearningModel.txx
+++ b/Code/UtilitiesAdapters/OpenCV/otbMachineLearningModel.txx
@@ -20,7 +20,7 @@
 
 #include "otbMachineLearningModel.h"
 
-namespace otb 
+namespace otb
 {
 
 template <class TInputValue, class TOutputValue>
@@ -43,7 +43,7 @@ MachineLearningModel<TInputValue,TOutputValue>
   targets->Clear();
 
   for(typename InputListSampleType::ConstIterator sIt = this->GetInputListSample()->Begin();
-      sIt!=this->GetInputListSample()->End();++sIt)
+      sIt!=this->GetInputListSample()->End(); ++sIt)
     {
     targets->PushBack(this->Predict(sIt.GetMeasurementVector()));
     }
diff --git a/Code/UtilitiesAdapters/OpenCV/otbMachineLearningUtils.cxx b/Code/UtilitiesAdapters/OpenCV/otbMachineLearningUtils.cxx
index 3b3e67bd9b..d1e4aa4d45 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbMachineLearningUtils.cxx
+++ b/Code/UtilitiesAdapters/OpenCV/otbMachineLearningUtils.cxx
@@ -79,7 +79,7 @@ bool ReadDataFile(const char * infname, InputListSampleType * samples, TargetLis
             sample[id] = atof(feature.substr(semicolonpos+1,feature.size()-semicolonpos).c_str());
             pos = nextpos;
             }
-          }        
+          }
         samples->PushBack(sample);
         labels->PushBack(label);
         }
diff --git a/Code/UtilitiesAdapters/OpenCV/otbOpenCVUtils.h b/Code/UtilitiesAdapters/OpenCV/otbOpenCVUtils.h
index 849d60a2e3..12c829d5de 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbOpenCVUtils.h
+++ b/Code/UtilitiesAdapters/OpenCV/otbOpenCVUtils.h
@@ -28,7 +28,7 @@ namespace otb
     output.create(1,sample.Size(),CV_32FC1);
 
     // Loop on sample size
-    for(unsigned int i = 0; i < sample.Size();++i)
+    for(unsigned int i = 0; i < sample.Size(); ++i)
       {
       output.at<float>(0,i) = sample[i];
       }
@@ -47,30 +47,30 @@ namespace otb
     // Check for valid listSample
     if(listSample != NULL && listSample->Size() > 0)
       {
-	// Retrieve samples count
-	unsigned int sampleCount = listSample->Size();
+       // Retrieve samples count
+       unsigned int sampleCount = listSample->Size();
     
-	// Build an iterator
-	typename T::ConstIterator sampleIt = listSample->Begin();
-
-	// Retrieve samples size alike
-	const unsigned int sampleSize = listSample->GetMeasurementVectorSize();
-
-	// Allocate CvMat
-	output.create(sampleCount,sampleSize,CV_32FC1);
-
-	// Fill the cv matrix
-	for(;sampleIt!=listSample->End();++sampleIt,++sampleIdx)
-	  {
-	    // Retrieve sample
-	    typename T::MeasurementVectorType sample = sampleIt.GetMeasurementVector();
-
-	    // Loop on sample size
-	    for(unsigned int i = 0; i < sampleSize;++i)
-	      {
-		output.at<float>(sampleIdx,i) = sample[i];
-	      }
-	  }
+       // Build an iterator
+       typename T::ConstIterator sampleIt = listSample->Begin();
+
+       // Retrieve samples size alike
+       const unsigned int sampleSize = listSample->GetMeasurementVectorSize();
+
+       // Allocate CvMat
+       output.create(sampleCount,sampleSize,CV_32FC1);
+
+       // Fill the cv matrix
+       for(; sampleIt!=listSample->End(); ++sampleIt,++sampleIdx)
+         {
+           // Retrieve sample
+           typename T::MeasurementVectorType sample = sampleIt.GetMeasurementVector();
+
+           // Loop on sample size
+           for(unsigned int i = 0; i < sampleSize; ++i)
+             {
+              output.at<float>(sampleIdx,i) = sample[i];
+             }
+         }
       }
   }
 
@@ -94,22 +94,22 @@ namespace otb
       unsigned int sampleSize = cvmat.cols;
 
       // Loop on samples
-      for(unsigned int i = 0; i < sampleCount;++i)
-	{
-	  typename T::MeasurementVectorType sample;
-	  itk::PixelBuilder<typename T::MeasurementVectorType>::Zero(sample,sampleSize);
-
-	  unsigned int realSampleSize = sample.Size();
-
-	  for(unsigned int j = 0; j < realSampleSize;++j)
-	    {
-	      // Don't forget to cast
-	      sample[j] = static_cast<typename T::MeasurementVectorType
-		::ValueType>(cvmat.at<float>(i,j));
-	    }
-	  // PushBack the new sample
-	  output->PushBack(sample);
-	}
+      for(unsigned int i = 0; i < sampleCount; ++i)
+       {
+         typename T::MeasurementVectorType sample;
+         itk::PixelBuilder<typename T::MeasurementVectorType>::Zero(sample,sampleSize);
+
+         unsigned int realSampleSize = sample.Size();
+
+         for(unsigned int j = 0; j < realSampleSize; ++j)
+           {
+             // Don't forget to cast
+             sample[j] = static_cast<typename T::MeasurementVectorType
+              ::ValueType>(cvmat.at<float>(i,j));
+           }
+         // PushBack the new sample
+         output->PushBack(sample);
+       }
       // return the output
       return output;
     }
diff --git a/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.h b/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.h
index 9b4e7850fc..4e9c0dfd6e 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.h
+++ b/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.h
@@ -26,7 +26,7 @@
 
 //include opencv
 #include <opencv.hpp>       // opencv general include file
-#include <ml/ml.hpp>		  // opencv machine learning include file
+#include <ml/ml.hpp>                // opencv machine learning include file
 
 namespace otb
 {
diff --git a/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx b/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx
index 25454bf0d8..3e3990f68a 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx
+++ b/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx
@@ -78,8 +78,8 @@ RandomForestsMachineLearningModel<TInputValue,TOutputValue>
                                        priors, // the array of priors
                                        m_CalculateVariableImportance,  // calculate variable importance
                                        m_MaxNumberOfVariables,       // number of variables randomly selected at node and used to find the best split(s).
-				       m_MaxNumberOfTrees,	 // max number of trees in the forest
-                                       m_ForestAccuracy,				// forrest accuracy
+                                   m_MaxNumberOfTrees,        // max number of trees in the forest
+                                       m_ForestAccuracy,                            // forrest accuracy
                                        m_TerminationCriteria // termination cirteria
                                       );
 
@@ -90,7 +90,7 @@ RandomForestsMachineLearningModel<TInputValue,TOutputValue>
 
   //train the RT model
   m_RFModel->train(samples, CV_ROW_SAMPLE, labels,
-	       cv::Mat(), cv::Mat(), var_type, cv::Mat(), params);
+              cv::Mat(), cv::Mat(), var_type, cv::Mat(), params);
 }
 
 template <class TInputValue, class TOutputValue>
diff --git a/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.h b/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.h
index eafed3a419..e0c0101c94 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.h
+++ b/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.h
@@ -27,7 +27,7 @@
 
 //include opencv
 #include <opencv.hpp>       // opencv general include file
-#include <ml/ml.hpp>		  // opencv machine learning include file
+#include <ml/ml.hpp>                // opencv machine learning include file
 
 namespace otb
 {
diff --git a/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.txx b/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.txx
index a72cd285de..a532767646 100644
--- a/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.txx
+++ b/Code/UtilitiesAdapters/OpenCV/otbSVMMachineLearningModel.txx
@@ -90,10 +90,10 @@ void
 SVMMachineLearningModel<TInputValue,TOutputValue>
 ::Save(const std::string & filename, const std::string & name)
 {
-	if (name == "")
-		m_SVMModel->save(filename.c_str(), 0);
-	else
-		m_SVMModel->save(filename.c_str(), name.c_str());
+       if (name == "")
+              m_SVMModel->save(filename.c_str(), 0);
+       else
+              m_SVMModel->save(filename.c_str(), name.c_str());
 }
 
 template <class TInputValue, class TOutputValue>
@@ -102,9 +102,9 @@ SVMMachineLearningModel<TInputValue,TOutputValue>
 ::Load(const std::string & filename, const std::string & name)
 {
   if (name == "")
-	  m_SVMModel->load(filename.c_str(), 0);
+         m_SVMModel->load(filename.c_str(), 0);
   else
-	  m_SVMModel->load(filename.c_str(), name.c_str());
+         m_SVMModel->load(filename.c_str(), name.c_str());
 }
 
 template <class TInputValue, class TOutputValue>
-- 
GitLab