diff --git a/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx b/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx
index 0e3471701e338fff636a9ffef455731d3baab800..1b2de12149db2ea571b90f9a69215607117c38ab 100644
--- a/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx
+++ b/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx
@@ -62,8 +62,7 @@
 //
 // Since the change detectors operate on neighborhoods, the functor
 // call will take 2 arguments which are
-// \doxygen{itk::ConstNeighborhoodIterator}s. See chapter
-// \ref{sec:ImageIteratorsChapter} for more information about ITK iterators.
+// \doxygen{itk::ConstNeighborhoodIterator}s. 
 //
 // The change detector functor is templated over the types of the
 // input iterators and the output result type. The core of the change
diff --git a/Examples/DataRepresentation/Image/Image3.cxx b/Examples/DataRepresentation/Image/Image3.cxx
index 2f5cc610f6cb43cc308faca3a2b63e539aeaf28a..e375cd1c16a9827c866477ee9609cf118bd442c3 100644
--- a/Examples/DataRepresentation/Image/Image3.cxx
+++ b/Examples/DataRepresentation/Image/Image3.cxx
@@ -29,10 +29,10 @@
 // pixel data contained in the image. Note that these two methods are
 // relatively slow and should not be used in situations where
 // high-performance access is required. Image iterators are the appropriate
-// mechanism to efficiently access image pixel data. (See
-// Chapter~\ref{sec:ImageIteratorsChapter} on page
-// \pageref{sec:ImageIteratorsChapter} for information about image
-// iterators.)
+// mechanism to efficiently access image pixel data. %(See
+// %Chapter~\ref{sec:ImageIteratorsChapter} on page
+// %\pageref{sec:ImageIteratorsChapter} for information about image
+// %iterators.)
 //
 // Software Guide : EndLatex 
 
diff --git a/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx b/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx
index baec52635e03291d1968a68daa142d9896a27877..6fe53c8a52171b16946fc46b32d93c895abff7b6 100644
--- a/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx
+++ b/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx
@@ -227,14 +227,14 @@ int main( int argc, char * argv[] )
 
 
   //  Software Guide : BeginLatex
-  // Figure~\ref{fig:LINECORRELATION_FILTER}
+  // Figure~\ref{fig:LINEFUSION_FILTER}
   // shows the result of applying the AssymetricFusionOf edge detector filter
   // to a SAR image.  \begin{figure} \center
   // \includegraphics[width=0.25\textwidth]{amst.eps}
   // \includegraphics[width=0.25\textwidth]{amstLineFusion.eps}
   // \itkcaption[Line Correlation Detector Application]{Result of applying
   // the \doxygen{otb::AssymetricFusionOfDetectorImageFilter} to a SAR
-  // image. From left to right : original image, line intensity.}  \label{fig:LINECORRELATION_FILTER} \end{figure}
+  // image. From left to right : original image, line intensity.}  \label{fig:LINEFUSION_FILTER} \end{figure}
   //
   //  Software Guide : EndLatex 
 
diff --git a/Examples/Patented/CMakeLists.txt b/Examples/Patented/CMakeLists.txt
index d12b8cbf6dd11a5b5c3827a83b20c2fb03e1b0a2..d35c93b5e2c59ea31c50e4fa25bf00d9f1807c52 100644
--- a/Examples/Patented/CMakeLists.txt
+++ b/Examples/Patented/CMakeLists.txt
@@ -2,10 +2,10 @@ PROJECT(PatentedExamples)
 INCLUDE_REGULAR_EXPRESSION("^.*$")
 
 
-ADD_EXECUTABLE(FuzzyConnectednessImageFilter FuzzyConnectednessImageFilter.cxx )
-TARGET_LINK_LIBRARIES(FuzzyConnectednessImageFilter OTBIO OTBCommon ITKNumerics ITKIO)
+#ADD_EXECUTABLE(FuzzyConnectednessImageFilter FuzzyConnectednessImageFilter.cxx )
+#TARGET_LINK_LIBRARIES(FuzzyConnectednessImageFilter OTBIO OTBCommon ITKNumerics ITKIO)
 
-ADD_EXECUTABLE(HybridSegmentationFuzzyVoronoi HybridSegmentationFuzzyVoronoi.cxx )
-TARGET_LINK_LIBRARIES(HybridSegmentationFuzzyVoronoi OTBIO OTBCommon ITKNumerics ITKIO)
+#ADD_EXECUTABLE(HybridSegmentationFuzzyVoronoi HybridSegmentationFuzzyVoronoi.cxx )
+#TARGET_LINK_LIBRARIES(HybridSegmentationFuzzyVoronoi OTBIO OTBCommon ITKNumerics ITKIO)
 
 
diff --git a/Examples/Segmentation/ConfidenceConnected.cxx b/Examples/Segmentation/ConfidenceConnected.cxx
index c823dc855d721720dfa04799a8aeb7396f17ee70..65716c3113d98bdef2e00add7e7957bfa3ccabd7 100644
--- a/Examples/Segmentation/ConfidenceConnected.cxx
+++ b/Examples/Segmentation/ConfidenceConnected.cxx
@@ -97,9 +97,7 @@
 //
 //  Noise present in the image can reduce the capacity of this filter to grow
 //  large regions. When faced with noisy images, it is usually convenient to
-//  pre-process the image by using an edge-preserving smoothing filter. Any of
-//  the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters}
-//  can be used to this end. In this particular example we use the
+//  pre-process the image by using an edge-preserving smoothing filter.  In this particular example we use the
 //  \doxygen{itk::CurvatureFlowImageFilter}, hence we need to include its header
 //  file.
 //
@@ -383,7 +381,7 @@ int main( int argc, char *argv[] )
   //  \itkcaption[ConnectedThreshold example parameters]{Parameters used for
   //  segmenting some structures shown in
   //  Figure~\ref{fig:ConnectedThresholdOutput} with the filter
-  //  \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConnectedThresholdOutput}}
+  //  \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConfidenceConnectedThresholdOutput}}
   //  \end{table}
   //
   //
diff --git a/Examples/Segmentation/ConnectedThresholdImageFilter.cxx b/Examples/Segmentation/ConnectedThresholdImageFilter.cxx
index 642e8dab4debc1f1772867750ebab30ca2325d82..808492b413a45d0bba2750885ba4d56e9ad376d3 100644
--- a/Examples/Segmentation/ConnectedThresholdImageFilter.cxx
+++ b/Examples/Segmentation/ConnectedThresholdImageFilter.cxx
@@ -91,9 +91,7 @@
 //
 //  Noise present in the image can reduce the capacity of this filter to grow
 //  large regions. When faced with noisy images, it is usually convenient to
-//  pre-process the image by using an edge-preserving smoothing filter. Any of
-//  the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters}
-//  could be used to this end. In this particular example we use the
+//  pre-process the image by using an edge-preserving smoothing filter.  In this particular example we use the
 //  \doxygen{CurvatureFlowImageFilter}, hence we need to include its header
 //  file.
 //
diff --git a/Examples/Segmentation/FastMarchingImageFilter.cxx b/Examples/Segmentation/FastMarchingImageFilter.cxx
index 7d90e5a38deb62ad9b77824e873a01d26a345e07..3b19fb3f7bc6e54580d9ffa695c1939b4ab59cb9 100644
--- a/Examples/Segmentation/FastMarchingImageFilter.cxx
+++ b/Examples/Segmentation/FastMarchingImageFilter.cxx
@@ -339,9 +339,9 @@ int main( int argc, char *argv[] )
   //  defined with the methods \code{SetOutputMinimum()} and
   //  \code{SetOutputMaximum()}. In our case, we want these two values to be
   //  $0.0$ and $1.0$ respectively in order to get a nice speed image to feed
-  //  to the FastMarchingImageFilter. Additional details on the use of
-  //  the SigmoidImageFilter are presented in
-  //  Section~\ref{sec:IntensityNonLinearMapping}.
+  //  to the FastMarchingImageFilter. %Additional details on the use of
+  //  %the SigmoidImageFilter are presented in
+  //  %Section~\ref{sec:IntensityNonLinearMapping}.
   //
   //  Software Guide : EndLatex 
 
@@ -397,8 +397,8 @@ int main( int argc, char *argv[] )
   //
   //  The CurvatureAnisotropicDiffusionImageFilter class requires a couple
   //  of parameters to be defined. The following are typical values. However they may have to be adjusted depending on the amount of
-  //  noise present in the input image. This filter has been discussed in
-  //  Section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
+  //  noise present in the input image. %This filter has been discussed in
+  //  %Section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
   //
   //  Software Guide : EndLatex 
 
@@ -414,8 +414,8 @@ int main( int argc, char *argv[] )
   //  The GradientMagnitudeRecursiveGaussianImageFilter performs the
   //  equivalent of a convolution with a Gaussian kernel followed by a
   //  derivative operator. The sigma of this Gaussian can be used to control
-  //  the range of influence of the image edges. This filter has been discussed
-  //  in Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}
+  //  the range of influence of the image edges. %This filter has been discussed
+  //  %in Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}
   //
   //  \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!SetSigma()}
   //
diff --git a/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx b/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx
index 031595df15d4b2cdf9db8c1ffb5345cd3f9a5fe9..8418a5fdb3cd09e3ebff4f72040a56d2d95d3286 100644
--- a/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx
+++ b/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx
@@ -344,7 +344,7 @@ int main( int argc, char *argv[] )
   //  As with the ConnectedThresholdImageFilter, several seeds could
   //  be provided to the filter by using the \code{AddSeed()} method.
   //  Compare the output of Figure
-  //  \ref{fig:NeighborhoodConnectedImageFilterOutput} with those of Figure
+  //  \ref{fig:NeighborhoodConnectedThresholdOutput} with those of Figure
   //  \ref{fig:ConnectedThresholdOutput} produced by the
   //  ConnectedThresholdImageFilter. You may want to play with the
   //  value of the neighborhood radius and see how it affect the smoothness of