From 8c5b394bb0754ffd8248615eb09c29a5d205633e Mon Sep 17 00:00:00 2001 From: Jordi Inglada <jordi.inglada@orfeo-toolbox.org> Date: Thu, 29 Jun 2006 13:42:38 +0000 Subject: [PATCH] Mise a jour exemples pour doc --- .../ChangeDetectionFrameworkExample.cxx | 3 +-- Examples/DataRepresentation/Image/Image3.cxx | 8 ++++---- .../AssymmetricFusionOfLineDetectorExample.cxx | 4 ++-- Examples/Patented/CMakeLists.txt | 8 ++++---- Examples/Segmentation/ConfidenceConnected.cxx | 6 ++---- .../Segmentation/ConnectedThresholdImageFilter.cxx | 4 +--- Examples/Segmentation/FastMarchingImageFilter.cxx | 14 +++++++------- .../NeighborhoodConnectedImageFilter.cxx | 2 +- 8 files changed, 22 insertions(+), 27 deletions(-) diff --git a/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx b/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx index 0e3471701e..1b2de12149 100644 --- a/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx +++ b/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx @@ -62,8 +62,7 @@ // // Since the change detectors operate on neighborhoods, the functor // call will take 2 arguments which are -// \doxygen{itk::ConstNeighborhoodIterator}s. See chapter -// \ref{sec:ImageIteratorsChapter} for more information about ITK iterators. +// \doxygen{itk::ConstNeighborhoodIterator}s. // // The change detector functor is templated over the types of the // input iterators and the output result type. The core of the change diff --git a/Examples/DataRepresentation/Image/Image3.cxx b/Examples/DataRepresentation/Image/Image3.cxx index 2f5cc610f6..e375cd1c16 100644 --- a/Examples/DataRepresentation/Image/Image3.cxx +++ b/Examples/DataRepresentation/Image/Image3.cxx @@ -29,10 +29,10 @@ // pixel data contained in the image. Note that these two methods are // relatively slow and should not be used in situations where // high-performance access is required. Image iterators are the appropriate -// mechanism to efficiently access image pixel data. (See -// Chapter~\ref{sec:ImageIteratorsChapter} on page -// \pageref{sec:ImageIteratorsChapter} for information about image -// iterators.) +// mechanism to efficiently access image pixel data. %(See +// %Chapter~\ref{sec:ImageIteratorsChapter} on page +// %\pageref{sec:ImageIteratorsChapter} for information about image +// %iterators.) // // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx b/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx index baec52635e..6fe53c8a52 100644 --- a/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx +++ b/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx @@ -227,14 +227,14 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex - // Figure~\ref{fig:LINECORRELATION_FILTER} + // Figure~\ref{fig:LINEFUSION_FILTER} // shows the result of applying the AssymetricFusionOf edge detector filter // to a SAR image. \begin{figure} \center // \includegraphics[width=0.25\textwidth]{amst.eps} // \includegraphics[width=0.25\textwidth]{amstLineFusion.eps} // \itkcaption[Line Correlation Detector Application]{Result of applying // the \doxygen{otb::AssymetricFusionOfDetectorImageFilter} to a SAR - // image. From left to right : original image, line intensity.} \label{fig:LINECORRELATION_FILTER} \end{figure} + // image. From left to right : original image, line intensity.} \label{fig:LINEFUSION_FILTER} \end{figure} // // Software Guide : EndLatex diff --git a/Examples/Patented/CMakeLists.txt b/Examples/Patented/CMakeLists.txt index d12b8cbf6d..d35c93b5e2 100644 --- a/Examples/Patented/CMakeLists.txt +++ b/Examples/Patented/CMakeLists.txt @@ -2,10 +2,10 @@ PROJECT(PatentedExamples) INCLUDE_REGULAR_EXPRESSION("^.*$") -ADD_EXECUTABLE(FuzzyConnectednessImageFilter FuzzyConnectednessImageFilter.cxx ) -TARGET_LINK_LIBRARIES(FuzzyConnectednessImageFilter OTBIO OTBCommon ITKNumerics ITKIO) +#ADD_EXECUTABLE(FuzzyConnectednessImageFilter FuzzyConnectednessImageFilter.cxx ) +#TARGET_LINK_LIBRARIES(FuzzyConnectednessImageFilter OTBIO OTBCommon ITKNumerics ITKIO) -ADD_EXECUTABLE(HybridSegmentationFuzzyVoronoi HybridSegmentationFuzzyVoronoi.cxx ) -TARGET_LINK_LIBRARIES(HybridSegmentationFuzzyVoronoi OTBIO OTBCommon ITKNumerics ITKIO) +#ADD_EXECUTABLE(HybridSegmentationFuzzyVoronoi HybridSegmentationFuzzyVoronoi.cxx ) +#TARGET_LINK_LIBRARIES(HybridSegmentationFuzzyVoronoi OTBIO OTBCommon ITKNumerics ITKIO) diff --git a/Examples/Segmentation/ConfidenceConnected.cxx b/Examples/Segmentation/ConfidenceConnected.cxx index c823dc855d..65716c3113 100644 --- a/Examples/Segmentation/ConfidenceConnected.cxx +++ b/Examples/Segmentation/ConfidenceConnected.cxx @@ -97,9 +97,7 @@ // // Noise present in the image can reduce the capacity of this filter to grow // large regions. When faced with noisy images, it is usually convenient to -// pre-process the image by using an edge-preserving smoothing filter. Any of -// the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters} -// can be used to this end. In this particular example we use the +// pre-process the image by using an edge-preserving smoothing filter. In this particular example we use the // \doxygen{itk::CurvatureFlowImageFilter}, hence we need to include its header // file. // @@ -383,7 +381,7 @@ int main( int argc, char *argv[] ) // \itkcaption[ConnectedThreshold example parameters]{Parameters used for // segmenting some structures shown in // Figure~\ref{fig:ConnectedThresholdOutput} with the filter - // \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConnectedThresholdOutput}} + // \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConfidenceConnectedThresholdOutput}} // \end{table} // // diff --git a/Examples/Segmentation/ConnectedThresholdImageFilter.cxx b/Examples/Segmentation/ConnectedThresholdImageFilter.cxx index 642e8dab4d..808492b413 100644 --- a/Examples/Segmentation/ConnectedThresholdImageFilter.cxx +++ b/Examples/Segmentation/ConnectedThresholdImageFilter.cxx @@ -91,9 +91,7 @@ // // Noise present in the image can reduce the capacity of this filter to grow // large regions. When faced with noisy images, it is usually convenient to -// pre-process the image by using an edge-preserving smoothing filter. Any of -// the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters} -// could be used to this end. In this particular example we use the +// pre-process the image by using an edge-preserving smoothing filter. In this particular example we use the // \doxygen{CurvatureFlowImageFilter}, hence we need to include its header // file. // diff --git a/Examples/Segmentation/FastMarchingImageFilter.cxx b/Examples/Segmentation/FastMarchingImageFilter.cxx index 7d90e5a38d..3b19fb3f7b 100644 --- a/Examples/Segmentation/FastMarchingImageFilter.cxx +++ b/Examples/Segmentation/FastMarchingImageFilter.cxx @@ -339,9 +339,9 @@ int main( int argc, char *argv[] ) // defined with the methods \code{SetOutputMinimum()} and // \code{SetOutputMaximum()}. In our case, we want these two values to be // $0.0$ and $1.0$ respectively in order to get a nice speed image to feed - // to the FastMarchingImageFilter. Additional details on the use of - // the SigmoidImageFilter are presented in - // Section~\ref{sec:IntensityNonLinearMapping}. + // to the FastMarchingImageFilter. %Additional details on the use of + // %the SigmoidImageFilter are presented in + // %Section~\ref{sec:IntensityNonLinearMapping}. // // Software Guide : EndLatex @@ -397,8 +397,8 @@ int main( int argc, char *argv[] ) // // The CurvatureAnisotropicDiffusionImageFilter class requires a couple // of parameters to be defined. The following are typical values. However they may have to be adjusted depending on the amount of - // noise present in the input image. This filter has been discussed in - // Section~\ref{sec:GradientAnisotropicDiffusionImageFilter}. + // noise present in the input image. %This filter has been discussed in + // %Section~\ref{sec:GradientAnisotropicDiffusionImageFilter}. // // Software Guide : EndLatex @@ -414,8 +414,8 @@ int main( int argc, char *argv[] ) // The GradientMagnitudeRecursiveGaussianImageFilter performs the // equivalent of a convolution with a Gaussian kernel followed by a // derivative operator. The sigma of this Gaussian can be used to control - // the range of influence of the image edges. This filter has been discussed - // in Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter} + // the range of influence of the image edges. %This filter has been discussed + // %in Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter} // // \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!SetSigma()} // diff --git a/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx b/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx index 031595df15..8418a5fdb3 100644 --- a/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx +++ b/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx @@ -344,7 +344,7 @@ int main( int argc, char *argv[] ) // As with the ConnectedThresholdImageFilter, several seeds could // be provided to the filter by using the \code{AddSeed()} method. // Compare the output of Figure - // \ref{fig:NeighborhoodConnectedImageFilterOutput} with those of Figure + // \ref{fig:NeighborhoodConnectedThresholdOutput} with those of Figure // \ref{fig:ConnectedThresholdOutput} produced by the // ConnectedThresholdImageFilter. You may want to play with the // value of the neighborhood radius and see how it affect the smoothness of -- GitLab