diff --git a/Code/BasicFilters/otbMeanShiftImageFilter2.h b/Code/BasicFilters/otbMeanShiftImageFilter2.h index e7eac848490e3c408a4f0ae5f90338d47e2b9860..4b86425d5043996447de1d13701f2eb99231664a 100644 --- a/Code/BasicFilters/otbMeanShiftImageFilter2.h +++ b/Code/BasicFilters/otbMeanShiftImageFilter2.h @@ -133,12 +133,16 @@ class NormL2 * and spectral center. * * Mean shift can be used for edge-preserving smoothing, or for clustering. The GetOutput() method - * return concatenation of spatial and spectral meanshift filtered data GetSpatialOutput() and GetSpectralOutput() gives - * resp. spatial and Spectral filtering parts + * return spatial and meanshift filtered data GetSpatialOutput() and GetRangeOutput() gives + * resp. spatial (as displacement map) and Spectral filtering parts * - * - * GetMetricOutput() method gives mean shift vector + * GetMetricOutput() method gives mean shift vector after pixel convergence. * GetIterationOutput() returns the number of iterations performed for each pixel. + * GetLabelOutput() returns a label map with one label for each mode. + * + * MeanShifVector norm is compared with Threshold (set using Get/Set accessor) to define pixel convergence (1e-3 by default). + * MaxIterationNumber defines maximum iteration number for each pixel convergence (set using Get/Set accessor). Set to 4 by default. + * ModeSearchOptimization is a boolean value, to choose between optimized and non optimized algorithm. If set to true (by default), assign mode value to each pixel on a path covered in convergence steps. * * For more information on mean shift techniques, one might consider reading the following article: * @@ -152,6 +156,7 @@ class NormL2 * \sa MeanShiftImageFilter * * \ingroup ImageSegmentation + * \ingroup ImageEnhancement */ template <class TInputImage, class TOutputImage, class TKernel = KernelUniform, class TNorm = NormL2, class TOutputMetricImage = TOutputImage, class TOutputIterationImage = otb::Image<unsigned int, TInputImage::ImageDimension> > class ITK_EXPORT MeanShiftImageFilter2