From acb3e4d7afdd2620d66ac87cb9dadad80de599b5 Mon Sep 17 00:00:00 2001 From: Arnaud Jaen <arnaud.jaen@c-s.fr> Date: Wed, 20 Mar 2013 16:48:42 +0100 Subject: [PATCH] TEST: Add tests on Machine Learning. --- Code/UtilitiesAdapters/CMakeLists.txt | 6 +- .../otbRandomForestsMachineLearningModel.txx | 10 +- Testing/Code/Learning/CMakeLists.txt | 64 ++++ Testing/Code/Learning/otbLearningTests6.cxx | 35 ++ .../Learning/otbTrainMachineLearningModel.cxx | 362 ++++++++++++++++++ 5 files changed, 474 insertions(+), 3 deletions(-) create mode 100644 Testing/Code/Learning/otbLearningTests6.cxx create mode 100644 Testing/Code/Learning/otbTrainMachineLearningModel.cxx diff --git a/Code/UtilitiesAdapters/CMakeLists.txt b/Code/UtilitiesAdapters/CMakeLists.txt index 90a65b790c..27a6ca4f40 100644 --- a/Code/UtilitiesAdapters/CMakeLists.txt +++ b/Code/UtilitiesAdapters/CMakeLists.txt @@ -4,7 +4,11 @@ ADD_SUBDIRECTORY(TinyXMLAdapters) ADD_SUBDIRECTORY(OGRAdapters) ADD_SUBDIRECTORY(boost) ADD_SUBDIRECTORY(ITKPendingPatches) -ADD_SUBDIRECTORY(OpenCV) + +IF(OTB_USE_OPENCV) + ADD_SUBDIRECTORY(OpenCV) +ENDIF(OTB_USE_OPENCV) + IF(NOT OTB_INSTALL_NO_DEVELOPMENT) FILE(GLOB __files1 "${CMAKE_CURRENT_SOURCE_DIR}/*.h") diff --git a/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx b/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx index 32debbf588..25454bf0d8 100644 --- a/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx +++ b/Code/UtilitiesAdapters/OpenCV/otbRandomForestsMachineLearningModel.txx @@ -118,7 +118,10 @@ void RandomForestsMachineLearningModel<TInputValue,TOutputValue> ::Save(const std::string & filename, const std::string & name) { - m_RFModel->save(filename.c_str(), name.c_str()); + if (name == "") + m_RFModel->save(filename.c_str(), 0); + else + m_RFModel->save(filename.c_str(), name.c_str()); } template <class TInputValue, class TOutputValue> @@ -126,7 +129,10 @@ void RandomForestsMachineLearningModel<TInputValue,TOutputValue> ::Load(const std::string & filename, const std::string & name) { - m_RFModel->load(filename.c_str(), name.c_str()); + if (name == "") + m_RFModel->load(filename.c_str(), 0); + else + m_RFModel->load(filename.c_str(), name.c_str()); } template <class TInputValue, class TOutputValue> diff --git a/Testing/Code/Learning/CMakeLists.txt b/Testing/Code/Learning/CMakeLists.txt index 50ee23c693..4e401ce909 100644 --- a/Testing/Code/Learning/CMakeLists.txt +++ b/Testing/Code/Learning/CMakeLists.txt @@ -7,6 +7,9 @@ SET(LEARNING_TESTS2 ${CXX_TEST_PATH}/otbLearningTests2) SET(LEARNING_TESTS3 ${CXX_TEST_PATH}/otbLearningTests3) SET(LEARNING_TESTS4 ${CXX_TEST_PATH}/otbLearningTests4) SET(LEARNING_TESTS5 ${CXX_TEST_PATH}/otbLearningTests5) +IF(OTB_USE_OPENCV) + SET(LEARNING_TESTS6 ${CXX_TEST_PATH}/otbLearningTests6) +ENDIF(OTB_USE_OPENCV) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ otbLearningTESTS1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -674,6 +677,55 @@ otbNeighborhoodMajorityVotingImageFilterTest ) +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ otbLearningTESTS6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +IF(OTB_USE_OPENCV) + ADD_TEST(leTuRandomForestsMachineLearningModelNew ${LEARNING_TESTS6} + otbRandomForestsMachineLearningModelNew) + + + ADD_TEST(leTvRandomForestsMachineLearningModel ${LEARNING_TESTS6} + #--compare-ascii ${NOTOL} + #${BASELINE_FILES}/RandomForestsMachineLearningModel.txt + #${TEMP}/RandomForestsMachineLearningModel.txt + otbRandomForestsMachineLearningModel + ${INPUTDATA}/letter.scale + ${TEMP}/RandomForestsMachineLearningModel.txt + ) + + ADD_TEST(leTuKNearestNeighborsMachineLearningModelNew ${LEARNING_TESTS6} + otbKNearestNeighborsMachineLearningModelNew) + + ADD_TEST(leTvKNearestNeighborsMachineLearningModel ${LEARNING_TESTS6} + otbKNearestNeighborsMachineLearningModel + ${INPUTDATA}/letter.scale) + + ADD_TEST(leTuSVMMachineLearningModelNew ${LEARNING_TESTS6} + otbSVMMachineLearningModelNew) + + ADD_TEST(leTvSVMMachineLearningModel ${LEARNING_TESTS6} + --compare-ascii ${NOTOL} + ${BASELINE_FILES}/svm_model.txt + ${TEMP}/svm_model.txt + otbSVMMachineLearningModel + ${INPUTDATA}/letter.scale + ${TEMP}/svm_model.txt + ) + + ADD_TEST(leTuLibSVMMachineLearningModelNew ${LEARNING_TESTS6} + otbLibSVMMachineLearningModelNew) + + ADD_TEST(leTvLibSVMMachineLearningModel ${LEARNING_TESTS6} + --compare-ascii ${NOTOL} + ${BASELINE_FILES}/libsvm_model.txt + ${TEMP}/libsvm_model.txt + otbLibSVMMachineLearningModel + ${INPUTDATA}/letter.scale + ${TEMP}/libsvm_model.txt + ) +ENDIF(OTB_USE_OPENCV) + # Testing srcs SET(BasicLearning_SRCS1 otbLearningTests1.cxx @@ -755,12 +807,24 @@ otbNeighborhoodMajorityVotingImageFilterNew.cxx otbNeighborhoodMajorityVotingImageFilterTest.cxx ) +IF(OTB_USE_OPENCV) + SET(BasicLearning_SRCS6 + otbLearningTests6.cxx + otbTrainMachineLearningModel.cxx + ) +ENDIF(OTB_USE_OPENCV) + OTB_ADD_EXECUTABLE(otbLearningTests1 "${BasicLearning_SRCS1}" "OTBLearning;OTBIO;OTBTesting") OTB_ADD_EXECUTABLE(otbLearningTests2 "${BasicLearning_SRCS2}" "OTBLearning;OTBIO;OTBTesting") OTB_ADD_EXECUTABLE(otbLearningTests3 "${BasicLearning_SRCS3}" "OTBLearning;OTBIO;OTBTesting") OTB_ADD_EXECUTABLE(otbLearningTests4 "${BasicLearning_SRCS4}" "OTBLearning;OTBIO;OTBTesting") OTB_ADD_EXECUTABLE(otbLearningTests5 "${BasicLearning_SRCS5}" "OTBLearning;OTBIO;OTBTesting") +IF(OTB_USE_OPENCV) + OTB_ADD_EXECUTABLE(otbLearningTests6 "${BasicLearning_SRCS6}" "OTBMachineLearning;OTBLearning;OTBIO;OTBTesting") +ENDIF(OTB_USE_OPENCV) + + ENDIF( NOT OTB_DISABLE_CXX_TESTING AND BUILD_TESTING ) diff --git a/Testing/Code/Learning/otbLearningTests6.cxx b/Testing/Code/Learning/otbLearningTests6.cxx new file mode 100644 index 0000000000..7643f2c0b0 --- /dev/null +++ b/Testing/Code/Learning/otbLearningTests6.cxx @@ -0,0 +1,35 @@ +/*========================================================================= + + Program: ORFEO Toolbox + Language: C++ + Date: $Date$ + Version: $Revision$ + + + Copyright (c) Centre National d'Etudes Spatiales. All rights reserved. + See OTBCopyright.txt for details. + + + This software is distributed WITHOUT ANY WARRANTY; without even + the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR + PURPOSE. See the above copyright notices for more information. + +=========================================================================*/ + +// this file defines the otbCommonTest for the test driver +// and all it expects is that you have a function called RegisterTests + + +#include "otbTestMain.h" + +void RegisterTests() +{ + REGISTER_TEST(otbLibSVMMachineLearningModelNew); + REGISTER_TEST(otbLibSVMMachineLearningModel); + REGISTER_TEST(otbSVMMachineLearningModelNew); + REGISTER_TEST(otbSVMMachineLearningModel); + REGISTER_TEST(otbKNearestNeighborsMachineLearningModelNew); + REGISTER_TEST(otbKNearestNeighborsMachineLearningModel); + REGISTER_TEST(otbRandomForestsMachineLearningModelNew); + REGISTER_TEST(otbRandomForestsMachineLearningModel); +} diff --git a/Testing/Code/Learning/otbTrainMachineLearningModel.cxx b/Testing/Code/Learning/otbTrainMachineLearningModel.cxx new file mode 100644 index 0000000000..c564d08df1 --- /dev/null +++ b/Testing/Code/Learning/otbTrainMachineLearningModel.cxx @@ -0,0 +1,362 @@ +/*========================================================================= + + Program: ORFEO Toolbox + Language: C++ + Date: $Date$ + Version: $Revision$ + + + Copyright (c) Centre National d'Etudes Spatiales. All rights reserved. + See OTBCopyright.txt for details. + + + This software is distributed WITHOUT ANY WARRANTY; without even + the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR + PURPOSE. See the above copyright notices for more information. + + =========================================================================*/ + +#include <fstream> +#include <string> +#include <algorithm> + +#include "otbMachineLearningModel.h" +#include "otbLibSVMMachineLearningModel.h" +#include "otbSVMMachineLearningModel.h" +#include "otbKNearestNeighborsMachineLearningModel.h" +#include "otbRandomForestsMachineLearningModel.h" + +#include "otbConfusionMatrixCalculator.h" + + +typedef otb::MachineLearningModel<float,short> MachineLearningModelType; +typedef MachineLearningModelType::InputValueType InputValueType; +typedef MachineLearningModelType::InputSampleType InputSampleType; +typedef MachineLearningModelType::InputListSampleType InputListSampleType; +typedef MachineLearningModelType::TargetValueType TargetValueType; +typedef MachineLearningModelType::TargetSampleType TargetSampleType; +typedef MachineLearningModelType::TargetListSampleType TargetListSampleType; +typedef otb::ConfusionMatrixCalculator<TargetListSampleType, TargetListSampleType> ConfusionMatrixCalculatorType; + +bool ReadDataFile(const std::string & infname, InputListSampleType * samples, TargetListSampleType * labels) +{ + std::ifstream ifs; + ifs.open(infname.c_str()); + + if(!ifs) + { + std::cout<<"Could not read file "<<infname<<std::endl; + return false; + } + + unsigned int nbfeatures = 0; + + while (!ifs.eof()) + { + std::string line; + std::getline(ifs, line); + + if(nbfeatures == 0) + { + nbfeatures = std::count(line.begin(),line.end(),' ')-1; + //std::cout<<"Found "<<nbfeatures<<" features per samples"<<std::endl; + } + + if(line.size()>1) + { + + InputSampleType sample(nbfeatures); + sample.Fill(0); + + std::string::size_type pos = line.find_first_of(" ", 0); + + // Parse label + TargetSampleType label; + label[0] = atoi(line.substr(0, pos).c_str()); + + bool endOfLine = false; + + unsigned int id = 0; + + while(!endOfLine) + { + std::string::size_type nextpos = line.find_first_of(" ", pos+1); + + if(nextpos == std::string::npos) + { + endOfLine = true; + nextpos = line.size()-1; + } + else + { + std::string feature = line.substr(pos,nextpos-pos); + std::string::size_type semicolonpos = feature.find_first_of(":"); + id = atoi(feature.substr(0,semicolonpos).c_str()); + sample[id] = atof(feature.substr(semicolonpos+1,feature.size()-semicolonpos).c_str()); + pos = nextpos; + } + } + samples->PushBack(sample); + labels->PushBack(label); + } + } + + //std::cout<<"Retrieved "<<samples->Size()<<" samples"<<std::endl; + + ifs.close(); + + return true; +} + +int otbLibSVMMachineLearningModelNew(int argc, char * argv[]) +{ + typedef otb::LibSVMMachineLearningModel<InputValueType, TargetValueType> SVMType; + SVMType::Pointer svmclassifier = SVMType::New(); + return EXIT_SUCCESS; +} + +int otbLibSVMMachineLearningModel(int argc, char * argv[]) +{ + if (argc != 3) + { + std::cout<<"Wrong number of arguments "<<std::endl; + std::cout<<"Usage : sample file, output file "<<std::endl; + return EXIT_FAILURE; + } + + + typedef otb::LibSVMMachineLearningModel<InputValueType, TargetValueType> SVMType; + InputListSampleType::Pointer samples = InputListSampleType::New(); + TargetListSampleType::Pointer labels = TargetListSampleType::New(); + TargetListSampleType::Pointer predicted = TargetListSampleType::New(); + + if (!ReadDataFile(argv[1], samples, labels)) + { + std::cout << "Failed to read samples file " << argv[1] << std::endl; + return EXIT_FAILURE; + } + + SVMType::Pointer svmclassifier = SVMType::New(); + svmclassifier->SetInputListSample(samples); + svmclassifier->SetTargetListSample(labels); + svmclassifier->Train(); + + svmclassifier->SetTargetListSample(predicted); + svmclassifier->PredictAll(); + + ConfusionMatrixCalculatorType::Pointer cmCalculator = ConfusionMatrixCalculatorType::New(); + + cmCalculator->SetProducedLabels(predicted); + cmCalculator->SetReferenceLabels(labels); + cmCalculator->Update(); + + std::cout << "Confusion matrix: " << std::endl; + std::cout << cmCalculator->GetConfusionMatrix() << std::endl; + std::cout << "Kappa: " << cmCalculator->GetKappaIndex() << std::endl; + std::cout << "Overall Accuracy: " << cmCalculator->GetOverallAccuracy() << std::endl; + + svmclassifier->Save(argv[2]); + + return EXIT_SUCCESS; +} + +int otbSVMMachineLearningModelNew(int argc, char * argv[]) +{ + typedef otb::SVMMachineLearningModel<InputValueType,TargetValueType> SVMType; + SVMType::Pointer svmclassifier = SVMType::New(); + return EXIT_SUCCESS; +} + +int otbSVMMachineLearningModel(int argc, char * argv[]) +{ + if (argc != 3 ) + { + std::cout<<"Wrong number of arguments "<<std::endl; + std::cout<<"Usage : sample file, output file "<<std::endl; + return EXIT_FAILURE; + } + + typedef otb::LibSVMMachineLearningModel<InputValueType, TargetValueType> SVMType; + + InputListSampleType::Pointer samples = InputListSampleType::New(); + TargetListSampleType::Pointer labels = TargetListSampleType::New(); + TargetListSampleType::Pointer predicted = TargetListSampleType::New(); + + if(!ReadDataFile(argv[1],samples,labels)) + { + std::cout<<"Failed to read samples file "<<argv[1]<<std::endl; + return EXIT_FAILURE; + } + + SVMType::Pointer svmclassifier = SVMType::New(); + svmclassifier->SetInputListSample(samples); + svmclassifier->SetTargetListSample(labels); + svmclassifier->Train(); + + svmclassifier->SetTargetListSample(predicted); + svmclassifier->PredictAll(); + + svmclassifier->Save(argv[2]); + + ConfusionMatrixCalculatorType::Pointer cmCalculator = ConfusionMatrixCalculatorType::New(); + + cmCalculator->SetProducedLabels(predicted); + cmCalculator->SetReferenceLabels(labels); + cmCalculator->Update(); + + std::cout<<"Confusion matrix: "<<std::endl; + std::cout<<cmCalculator->GetConfusionMatrix()<<std::endl; + std::cout<<"Kappa: "<<cmCalculator->GetKappaIndex()<<std::endl; + std::cout<<"Overall Accuracy: "<<cmCalculator->GetOverallAccuracy()<<std::endl; + + return EXIT_SUCCESS; +} + +int otbKNearestNeighborsMachineLearningModelNew(int argc, char * argv[]) +{ + typedef otb::KNearestNeighborsMachineLearningModel<InputValueType,TargetValueType> KNearestNeighborsType; + KNearestNeighborsType::Pointer knnclassifier = KNearestNeighborsType::New(); + return EXIT_SUCCESS; +} + +int otbKNearestNeighborsMachineLearningModel(int argc, char * argv[]) +{ + if (argc != 2 ) + { + std::cout<<"Wrong number of arguments "<<std::endl; + std::cout<<"Usage : sample file"<<std::endl; + return EXIT_FAILURE; + } + + typedef otb::KNearestNeighborsMachineLearningModel<InputValueType,TargetValueType> KNearestNeighborsType; + InputListSampleType::Pointer samples = InputListSampleType::New(); + TargetListSampleType::Pointer labels = TargetListSampleType::New(); + TargetListSampleType::Pointer predicted = TargetListSampleType::New(); + + if(!ReadDataFile(argv[1],samples,labels)) + { + std::cout<<"Failed to read samples file "<<argv[1]<<std::endl; + return EXIT_FAILURE; + } + + KNearestNeighborsType::Pointer knnclassifier = KNearestNeighborsType::New(); + knnclassifier->SetInputListSample(samples); + knnclassifier->SetTargetListSample(labels); + knnclassifier->Train(); + + knnclassifier->SetTargetListSample(predicted); + knnclassifier->Superclass::PredictAll(); + + ConfusionMatrixCalculatorType::Pointer cmCalculator = ConfusionMatrixCalculatorType::New(); + + cmCalculator->SetProducedLabels(predicted); + cmCalculator->SetReferenceLabels(labels); + cmCalculator->Update(); + + std::cout<<"Confusion matrix: "<<std::endl; + std::cout<<cmCalculator->GetConfusionMatrix()<<std::endl; + std::cout<<"Kappa: "<<cmCalculator->GetKappaIndex()<<std::endl; + std::cout<<"Overall Accuracy: "<<cmCalculator->GetOverallAccuracy()<<std::endl; + + //write the model + //knnclassifier->Save(argv[2]); + + return EXIT_SUCCESS; +} + +int otbRandomForestsMachineLearningModelNew(int argc, char * argv[]) +{ + typedef otb::RandomForestsMachineLearningModel<InputValueType,TargetValueType> RandomForestType; + RandomForestType::Pointer rfclassifier = RandomForestType::New(); + return EXIT_SUCCESS; +} + +int otbRandomForestsMachineLearningModel(int argc, char * argv[]) +{ + if (argc != 3 ) + { + std::cout<<"Wrong number of arguments "<<std::endl; + std::cout<<"Usage : sample file, output file "<<std::endl; + return EXIT_FAILURE; + } + + typedef otb::RandomForestsMachineLearningModel<InputValueType,TargetValueType> RandomForestType; + InputListSampleType::Pointer samples = InputListSampleType::New(); + TargetListSampleType::Pointer labels = TargetListSampleType::New(); + TargetListSampleType::Pointer predicted = TargetListSampleType::New(); + + if(!ReadDataFile(argv[1],samples,labels)) + { + std::cout<<"Failed to read samples file "<<argv[1]<<std::endl; + return EXIT_FAILURE; + } + + std::vector<float> priors(26,1.); + + + RandomForestType::Pointer rfclassifier = RandomForestType::New(); + rfclassifier->SetInputListSample(samples); + rfclassifier->SetTargetListSample(labels); + + //set parameters + rfclassifier->SetPriors(priors); + // rfclassifier->SetMaxNumberOfTrees(30); + // rfclassifier->SetMaxDepth(30); + // rfclassifier->SetMaxNumberOfCategories(30); + // rfclassifier->SetMaxNumberOfVariables(4); + + rfclassifier->Train(); + + rfclassifier->SetTargetListSample(predicted); + rfclassifier->PredictAll(); + + ConfusionMatrixCalculatorType::Pointer cmCalculator = ConfusionMatrixCalculatorType::New(); + + std::cout<<rfclassifier->GetTargetListSample()->Size()<<std::endl; + + cmCalculator->SetProducedLabels(predicted); + cmCalculator->SetReferenceLabels(labels); + cmCalculator->Update(); + + std::cout<<"Confusion matrix: "<<std::endl; + std::cout<<cmCalculator->GetConfusionMatrix()<<std::endl; + const float kappaIdx = cmCalculator->GetKappaIndex(); + std::cout<<"Kappa: "<<kappaIdx<<std::endl; + std::cout<<"Overall Accuracy: "<<cmCalculator->GetOverallAccuracy()<<std::endl; + + rfclassifier->Save(argv[2]); + //std::cout<<"GetTrainError: "<<rfclassifier->GetTrainError() << std::endl; + + + //Load Model to new RF + TargetListSampleType::Pointer predictedLoad = TargetListSampleType::New(); + RandomForestType::Pointer rfclassifierLoad = RandomForestType::New(); + + rfclassifierLoad->Load(argv[2]); + rfclassifierLoad->SetInputListSample(samples); + rfclassifierLoad->SetTargetListSample(predictedLoad); + rfclassifierLoad->PredictAll(); + + ConfusionMatrixCalculatorType::Pointer cmCalculatorLoad = ConfusionMatrixCalculatorType::New(); + + cmCalculatorLoad->SetProducedLabels(predictedLoad); + cmCalculatorLoad->SetReferenceLabels(labels); + cmCalculatorLoad->Update(); + + std::cout<<"Confusion matrix: "<<std::endl; + std::cout<<cmCalculatorLoad->GetConfusionMatrix()<<std::endl; + const float kappaIdxLoad = cmCalculatorLoad->GetKappaIndex(); + std::cout<<"Kappa: "<<kappaIdxLoad<<std::endl; + std::cout<<"Overall Accuracy: "<<cmCalculatorLoad->GetOverallAccuracy()<<std::endl; + + + if ( vcl_abs(kappaIdxLoad - kappaIdx) < 0.00000001) + { + return EXIT_SUCCESS; + } + else + { + return EXIT_FAILURE; + } +} + -- GitLab