diff --git a/Examples/Learning/SVMPointSetExample.cxx b/Examples/Learning/SVMPointSetExample.cxx
index a9b50d9a1292a05cec85f7278a4eadb2bff3ce23..f24906e16bd82f97a5e205238e033fdb12d9ebc3 100644
--- a/Examples/Learning/SVMPointSetExample.cxx
+++ b/Examples/Learning/SVMPointSetExample.cxx
@@ -64,7 +64,8 @@ int main( int argc, char* argv[] )
   LabelPointsContainer::Pointer lCont = LabelPointsContainer::New();
 
   /* We learn the y>x | y<x boundary*/
-  srand((unsigned)time(0));
+//  srand((unsigned)time(0));
+  srand(0);
   int lowest = 0;
   int range = 1000;
   
diff --git a/Testing/Code/Learning/SVMPointSetExample.cxx b/Testing/Code/Learning/SVMPointSetExample.cxx
deleted file mode 100755
index c70d91e5731bf0da7b30af9f1ab2ce10a6416b77..0000000000000000000000000000000000000000
--- a/Testing/Code/Learning/SVMPointSetExample.cxx
+++ /dev/null
@@ -1,241 +0,0 @@
-/*=========================================================================
-
-  Program:   ORFEO Toolbox
-  Language:  C++
-  Date:      $Date$
-  Version:   $Revision$
-
-
-  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
-  See OTBCopyright.txt for details.
-
-
-     This software is distributed WITHOUT ANY WARRANTY; without even 
-     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
-     PURPOSE.  See the above copyright notices for more information.
-
-=========================================================================*/
-
-#if defined(_MSC_VER)
-#pragma warning ( disable : 4786 )
-#endif
-
-#define MAIN
-
-
-#include "itkExceptionObject.h"
-#include "itkPointSet.h"
-#include <iostream>
-#include <cstdlib> 
-
-#include "otbSVMPointSetModelEstimator.h"
-#include "itkPointSetToListAdaptor.h"
-#include "itkListSample.h"
-#include "otbSVMClassifier.h"
-
-
-
-int main( int argc, char* argv[] )
-{
-
-
-  typedef float InputPixelType;
-  
-  typedef std::vector<InputPixelType>                             InputVectorType;
-  typedef int                             LabelPixelType;
-  const   unsigned int        	                    Dimension = 2;
-
-  typedef itk::PointSet< InputVectorType,  Dimension >
-    MeasurePointSetType;
-
-  typedef itk::PointSet< LabelPixelType,  Dimension >     LabelPointSetType;
-
-
-  MeasurePointSetType::Pointer mPSet = MeasurePointSetType::New();
-  LabelPointSetType::Pointer lPSet = LabelPointSetType::New();
-
-
-  typedef MeasurePointSetType::PointType    MeasurePointType;
-  typedef LabelPointSetType::PointType    LabelPointType;
-
-  typedef MeasurePointSetType::PointsContainer      MeasurePointsContainer;
-  typedef LabelPointSetType::PointsContainer      LabelPointsContainer;
-
-  MeasurePointsContainer::Pointer mCont = MeasurePointsContainer::New();
-  LabelPointsContainer::Pointer lCont = LabelPointsContainer::New();
-
-  /* We learn the y>x | y<x boundary*/
-//  srand((unsigned)time(0));
-  srand(0);
-  int lowest = 0;
-  int range = 1000;
-  
-  for(unsigned int pointId = 0; pointId<500; pointId++)
-    {
-    
-    MeasurePointType mP;
-    LabelPointType lP;
-
-    int x_coord = lowest+static_cast<int>(range*(rand()/(RAND_MAX + 1.0)));
-    int y_coord = lowest+static_cast<int>(range*(rand()/(RAND_MAX + 1.0))); 
-
-    std::cout << "coords : " << x_coord << " " << y_coord << std::endl;
-    mP[0] = x_coord;
-    mP[1] = y_coord;
-
-    lP[0] = x_coord;
-    lP[1] = y_coord;
-
-
-    InputVectorType measure; 
-    measure.push_back(static_cast<InputPixelType>((x_coord*1.0-lowest)/range));
-    measure.push_back(static_cast<InputPixelType>((y_coord*1.0-lowest)/range));
-
-    LabelPixelType label;
-
-    if(x_coord < y_coord)
-      label= -1;
-    else
-      label = 1;
-
-    std::cout << "Label : " << label << std::endl;
-    std::cout << "Measures : " << measure[0] << " " << measure[1] << std::endl;
-
-    mCont->InsertElement( pointId , mP );
-    mPSet->SetPointData( pointId, measure );   
-
-
-    lCont->InsertElement( pointId , lP );
-    lPSet->SetPointData( pointId, label );   
-
-
-    }
-
-  mPSet->SetPoints( mCont );
-  lPSet->SetPoints( lCont );
-    
-  typedef otb::SVMPointSetModelEstimator< MeasurePointSetType,
-    LabelPointSetType >   EstimatorType;
-	
-	
-  EstimatorType::Pointer estimator = EstimatorType::New();
-
-  estimator->SetInputPointSet( mPSet );
-  estimator->SetTrainingPointSet( lPSet );
-  estimator->SetNumberOfClasses( 2 );
-
-
-  estimator->Update();
-
-  std::cout << "Saving model" << std::endl;
-  estimator->SaveModel("model.svm");
-
-
-  // Build the test set
-
-  MeasurePointSetType::Pointer tPSet = MeasurePointSetType::New();
-  MeasurePointsContainer::Pointer tCont = MeasurePointsContainer::New();
-  
-  for(unsigned int pointId = 0; pointId<100; pointId++)
-    {
-    
-    MeasurePointType tP;
-
-    int x_coord = lowest+static_cast<int>(range*(rand()/(RAND_MAX + 1.0)));
-    int y_coord = lowest+static_cast<int>(range*(rand()/(RAND_MAX + 1.0))); 
-
-    std::cout << "coords : " << x_coord << " " << y_coord << std::endl;
-    tP[0] = x_coord;
-    tP[1] = y_coord;
-
-
-    InputVectorType measure; 
-    measure.push_back(static_cast<InputPixelType>((x_coord*1.0-lowest)/range));
-    measure.push_back(static_cast<InputPixelType>((y_coord*1.0-lowest)/range));
-
-
-    std::cout << "Measures : " << measure[0] << " " << measure[1] << std::endl;
-
-    tCont->InsertElement( pointId , tP );
-    tPSet->SetPointData( pointId, measure );   
-
-    }
-
-  tPSet->SetPoints( tCont );
-
-  // Classify
-
-  typedef itk::Statistics::PointSetToListAdaptor< MeasurePointSetType >
-    SampleType;
-    SampleType::Pointer sample = SampleType::New();
-    sample->SetPointSet( tPSet );
-
-    std::cout << "Sample set to Adaptor" << std::endl;  
-
-
-    /** preparing classifier and decision rule object */
-    typedef otb::SVMModel< SampleType::MeasurementVectorType::ValueType, LabelPixelType > ModelType;
-
-    ModelType::Pointer model = estimator->GetModel();
-
-    int numberOfClasses = model->GetNumberOfClasses();
-
-    std::cout << "Classification for " << numberOfClasses << " classes " << std::endl;
-    
-    typedef otb::SVMClassifier< SampleType, LabelPixelType > ClassifierType ;
-
-    ClassifierType::Pointer classifier = ClassifierType::New() ;
-  
-    classifier->SetNumberOfClasses(numberOfClasses) ;
-    classifier->SetModel( model );
-    classifier->SetSample(sample.GetPointer()) ;
-    classifier->Update() ;
-
-    /* Build the class map */
-    
-    std::cout << "classifier get output" << std::endl;  
-    ClassifierType::OutputType* membershipSample =
-      classifier->GetOutput() ;
-    std::cout << "Sample iterators" << std::endl;  
-    ClassifierType::OutputType::ConstIterator m_iter =
-      membershipSample->Begin() ;
-    ClassifierType::OutputType::ConstIterator m_last =
-      membershipSample->End() ;
-
-
-    double error = 0.0;
-    unsigned int pointId = 0;
-    while (m_iter != m_last)
-      {
-      ClassifierType::ClassLabelType label = m_iter.GetClassLabel();
-      
-      InputVectorType measure; 
-      
-      tPSet->GetPointData(pointId, &measure);
-
-      ClassifierType::ClassLabelType expectedLabel;
-      if(measure[0] < measure[1])
-	expectedLabel= -1;
-      else
-	expectedLabel = 1;
-
-      double dist = fabs(measure[0] - measure[1]);
-      
-      if(label != expectedLabel )
-	error++;
-
-      std::cout << int(label) << "/" << int(expectedLabel) << " --- " << dist << std::endl;
-      
-      
-      ++pointId;
-      ++m_iter ;
-      }
-    
-    std::cout << "Error = " << error/pointId << std::endl;
-    
-
-
-  return EXIT_SUCCESS;
-}
-
-