diff --git a/Examples/Markov/CMakeLists.txt b/Examples/Markov/CMakeLists.txt
index 1d2b5cbebc500c195ee22111dd886661cb522618..13dca8f2b254d8a89f6b89ccd3036971d1e9425c 100755
--- a/Examples/Markov/CMakeLists.txt
+++ b/Examples/Markov/CMakeLists.txt
@@ -3,11 +3,11 @@ INCLUDE_REGULAR_EXPRESSION("^.*$")
 
 SET(Markov_EXAMPLES ${CXX_TEST_PATH}/otbMarkovExamplesTests)
 
-ADD_EXECUTABLE(MarkovClassification1Example MarkovClassification1Example.cxx )
-TARGET_LINK_LIBRARIES(MarkovClassification1Example OTBMarkov OTBCommon OTBIO ITKNumerics ITKIO)
+ADD_EXECUTABLE(MarkovRandomField1Example MarkovRandomField1Example.cxx )
+TARGET_LINK_LIBRARIES(MarkovRandomField1Example OTBMarkov OTBCommon OTBIO ITKNumerics ITKIO)
 
-ADD_EXECUTABLE(MarkovClassification2Example MarkovClassification2Example.cxx )
-TARGET_LINK_LIBRARIES(MarkovClassification2Example OTBMarkov OTBCommon OTBIO ITKNumerics ITKIO)
+ADD_EXECUTABLE(MarkovRandomField2Example MarkovRandomField2Example.cxx )
+TARGET_LINK_LIBRARIES(MarkovRandomField2Example OTBMarkov OTBCommon OTBIO ITKNumerics ITKIO)
 
 ADD_EXECUTABLE(MarkovRestaurationExample MarkovRestaurationExample.cxx )
 TARGET_LINK_LIBRARIES(MarkovRestaurationExample OTBMarkov OTBCommon OTBIO ITKNumerics ITKIO)
@@ -27,25 +27,25 @@ SET(EXE_TESTS ${CXX_TEST_PATH}/otbMarkovExamplesTests)
 SET(TOL 0.0)
 SET(EPSILON 0.00000001)
 
-ADD_TEST(MarkovClassification1ExampleTest ${EXE_TESTS}
+ADD_TEST(MarkovRandomField1ExampleTest ${EXE_TESTS}
 	--compare-image ${EPSILON}
-                    ${BASELINE}/MarkovClassification1.png
-                    ${TEMP}/MarkovClassification1.png
-    MarkovClassification1ExampleTest
+                    ${BASELINE}/MarkovRandomField1.png
+                    ${TEMP}/MarkovRandomField1.png
+    MarkovRandomField1ExampleTest
         ${INPUTDATA}/QB_Suburb.png
-        ${TEMP}/MarkovClassification1.png
+        ${TEMP}/MarkovRandomField1.png
         1.0
         20
         1.0
 )
 
-ADD_TEST(MarkovClassification2ExampleTest ${EXE_TESTS}
+ADD_TEST(MarkovRandomField2ExampleTest ${EXE_TESTS}
 	--compare-image ${EPSILON}
-                    ${BASELINE}/MarkovClassification2.png
-                    ${TEMP}/MarkovClassification2.png
-    MarkovClassification2ExampleTest
+                    ${BASELINE}/MarkovRandomField2.png
+                    ${TEMP}/MarkovRandomField2.png
+    MarkovRandomField2ExampleTest
         ${INPUTDATA}/QB_Suburb.png
-        ${TEMP}/MarkovClassification2.png
+        ${TEMP}/MarkovRandomField2.png
         1.0
         5
 )
diff --git a/Examples/Markov/MarkovClassification1Example.cxx b/Examples/Markov/MarkovClassification1Example.cxx
deleted file mode 100755
index 7d15b83e230ce93167ec97f9a98e77504f4274c5..0000000000000000000000000000000000000000
--- a/Examples/Markov/MarkovClassification1Example.cxx
+++ /dev/null
@@ -1,328 +0,0 @@
-
-/*=========================================================================
-
-  Program:   ORFEO Toolbox
-  Language:  C++
-  Date:      $Date$
-  Version:   $Revision$
-
-
-  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
-  See OTBCopyright.txt for details.
-
-
-     This software is distributed WITHOUT ANY WARRANTY; without even 
-     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
-     PURPOSE.  See the above copyright notices for more information.
-
-=========================================================================*/
-#if defined(_MSC_VER)
-#pragma warning ( disable : 4786 )
-#endif
-
-#ifdef __BORLANDC__
-#define ITK_LEAN_AND_MEAN
-#endif
-
-//  Software Guide : BeginCommandLineArgs
-//    INPUTS: {QB_Suburb.png}
-//    OUTPUTS: {MarkovClassification1.png}
-//    1.0 20 1.0
-//  Software Guide : EndCommandLineArgs
-
-
-// Software Guide : BeginLatex
-//
-// This example illustrates the details of the \doxygen{otb}{MarkovRandomFieldFilter}. 
-// This filter is an application of the Markov Random Fields for classification, 
-// segmentation or restauration.
-//
-// This example applies the \doxygen{otb}{MarkovRandomFieldFilter} to 
-// classify an image into four classes defined by their mean and variance. The 
-// optimization is done using an Metropolis algorithm with a random sampler. The 
-// regularization energy is defined by a Potts model and the fidelity by a 
-// Gaussian model.
-//
-//
-// Software Guide : EndLatex 
-
-#include "otbImageFileReader.h"
-#include "otbImageFileWriter.h"
-#include "otbImage.h"
-#include "otbMarkovRandomFieldFilter.h"
-#include "itkRescaleIntensityImageFilter.h"
-
-
-// Software Guide : BeginLatex
-//
-// The first step toward the use of this filter is the inclusion of the proper 
-// header files.
-//
-// Software Guide : EndLatex 
-
-// Software Guide : BeginCodeSnippet
-#include "otbMRFEnergyPotts.h"
-#include "otbMRFEnergyGaussianClassification.h"
-#include "otbMRFOptimizerMetropolis.h"
-#include "otbMRFSamplerRandom.h"
-// Software Guide : EndCodeSnippet
-
-
-int main(int argc, char* argv[] ) 
-{
-  
-  if( argc != 6 )
-  {
-    std::cerr << "Missing Parameters "<< argc << std::endl;
-    std::cerr << "Missing Parameters " << std::endl;
-    std::cerr << "Usage: " << argv[0];
-    std::cerr << " inputImage output lambda iterations optimizerTemperature" << std::endl;
-    return 1;
-  }
-  
-  
-  //  Software Guide : BeginLatex
-  //
-  //  Then we must decide what pixel type to use for the image. We
-  //  choose to make all computations with double precision.
-  //  The labelled image is of type unsigned char which allows up to 256 different 
-  //  classes.
-  //
-  //  Software Guide : EndLatex 
-
-  // Software Guide : BeginCodeSnippet
-
-  const unsigned int Dimension = 2;
-  
-  typedef double InternalPixelType;
-  typedef unsigned char LabelledPixelType;
-  typedef otb::Image<InternalPixelType, Dimension>  InputImageType;
-  typedef otb::Image<LabelledPixelType, Dimension>    LabelledImageType;
-
-  // Software Guide : EndCodeSnippet
-
-  
-  //  Software Guide : BeginLatex
-  //
-  //  We define a reader for the image to be classified, an initialisation for the 
-  //  classification (which could be random) and a writer for the final
-  //  classification.
-  //
-  //  Software Guide : EndLatex 
-
-  // Software Guide : BeginCodeSnippet
-
-  typedef otb::ImageFileReader< InputImageType >  ReaderType;
-  typedef otb::ImageFileWriter< LabelledImageType >  WriterType;
-  
-  ReaderType::Pointer reader = ReaderType::New();
-  WriterType::Pointer writer = WriterType::New();
-  
-  const char * inputFilename  = argv[1];
-  const char * outputFilename = argv[2];
-  
-  reader->SetFileName( inputFilename );
-  writer->SetFileName( outputFilename );
-
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  Finally, we define the different classes necessary for the Markov classification. 
-  //  A \doxygen{otb}{MarkovRandomFieldFilter} is instanciated, this is the 
-  // main class which connect the other to do the Markov classification.
-  //
-  //  Software Guide : EndLatex 
-
-  // Software Guide : BeginCodeSnippet
-
-  typedef otb::MarkovRandomFieldFilter
-	  <InputImageType,LabelledImageType> MarkovRandomFieldFilterType;
-
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  An \doxygen{otb}{MRFSamplerRandomMAP}, which derives from the 
-  // \doxygen{otb}{MRFSampler}, is instanciated. The sampler is in charge of 
-  // proposing a modification for a given site. The 
-  // \doxygen{otb}{MRFSamplerRandomMAP}, randomly pick one possible value 
-  // according to the MAP probability.
-  //
-  //  Software Guide : EndLatex 
-
-  // Software Guide : BeginCodeSnippet
-
-  typedef otb::MRFSamplerRandom< InputImageType, LabelledImageType> SamplerType;
-
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  An \doxygen{otb}{MRFOptimizerMetropoli}, which derives from the 
-  // \doxygen{otb}{MRFOptimizer}, is instanciated. The optimizer is in charge 
-  // of accepting or rejecting the value proposed by the sampler. The 
-  // \doxygen{otb}{MRFSamplerRandomMAP}, accept the proposal according to the 
-  // variation of energy it causes and a temperature parameter.
-  //
-  //  Software Guide : EndLatex 
-
-  // Software Guide : BeginCodeSnippet
-
-  typedef otb::MRFOptimizerMetropolis OptimizerType;
-
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  // Two energy, deriving from the \doxygen{otb}{MRFEnergy} class need to be instanciated. One energy
-  // is required for the regularization, taking into account the relashionship between neighborhing pixels
-  // in the classified image. Here it is done with the \doxygen{otb}{MRFEnergyPotts} which implement
-  // a Potts model.
-  //
-  // The second energy is for the fidelity to the original data. Here it is done with an
-  // \doxygen{otb}{MRFEnergyGaussianClassification} class, which defines a gaussian model for the data.
-  //
-  //  Software Guide : EndLatex 
-
-  // Software Guide : BeginCodeSnippet
-
-  typedef otb::MRFEnergyPotts
-		  <LabelledImageType, LabelledImageType>  EnergyRegularizationType;
-  typedef otb::MRFEnergyGaussianClassification
-		  <InputImageType, LabelledImageType>  EnergyFidelityType;
-
-  // Software Guide : EndCodeSnippet
-  
-   // Software Guide : BeginLatex
-   //
-   // The different filters composing our pipeline are created by invoking their
-   // \code{New()} methods, assigning the results to smart pointers.
-   //
-   // Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-
-  MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
-  EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
-  EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
-  OptimizerType::Pointer optimizer = OptimizerType::New();
-  SamplerType::Pointer sampler = SamplerType::New();
-
-  // Software Guide : EndCodeSnippet
-  
-  // Software Guide : BeginLatex
-  //
-  // Parameter for the \doxygen{otb}{MRFEnergyGaussianClassification} class, meand
-  // and standard deviation are created.
-  //
-  // Software Guide : EndLatex
-  
-  // Overpass random calculation(for test only):
-  sampler->InitializeSeed(0);
-  optimizer->InitializeSeed(0);
-  markovFilter->InitializeSeed(0);
-  
-  // Software Guide : BeginCodeSnippet
-  
-  unsigned int nClass = 4;
-  energyFidelity->SetNumberOfParameters(2*nClass); 
-  EnergyFidelityType::ParametersType parameters;
-  parameters.SetSize(energyFidelity->GetNumberOfParameters());
-  parameters[0]=10.0; //Class 0 mean
-  parameters[1]=10.0; //Class 0 stdev
-  parameters[2]=80.0;//Class 1 mean
-  parameters[3]=10.0; //Class 1 stdev
-  parameters[4]=150.0; //Class 2 mean
-  parameters[5]=10.0; //Class 2 stdev
-  parameters[6]=220.0;//Class 3 mean
-  parameters[7]=10.0; //Class 3 stde
-  energyFidelity->SetParameters(parameters);
-  
-  // Software Guide : EndCodeSnippet
-  
-  
-  // Software Guide : BeginLatex
-  //
-  // Parameters are given to the different class an the sampler, optimizer and
-  // energies are connected with the Markov filter.
-  //
-  // Software Guide : EndLatex
-  
-  // Software Guide : BeginCodeSnippet
-  
-  OptimizerType::ParametersType param(1);
-  param.Fill(atof(argv[5]));
-  optimizer->SetParameters(param);
-  markovFilter->SetNumberOfClasses(nClass);  
-  markovFilter->SetMaximumNumberOfIterations(atoi(argv[4]));
-  markovFilter->SetErrorTolerance(0.0);
-  markovFilter->SetLambda(atof(argv[3]));
-  markovFilter->SetNeighborhoodRadius(1);
-  
-  markovFilter->SetEnergyRegularization(energyRegularization);
-  markovFilter->SetEnergyFidelity(energyFidelity);
-  markovFilter->SetOptimizer(optimizer);
-  markovFilter->SetSampler(sampler);
-  
-  // Software Guide : EndCodeSnippet
-  
-  // Software Guide : BeginLatex
-  //
-  // The pipeline is connected. An \doxygen{itk}{RescaleIntensityImageFilter} 
-  // rescale the classified image before saving it.
-  //
-  // Software Guide : EndLatex
-  
-  // Software Guide : BeginCodeSnippet
-  
-  markovFilter->SetInput(reader->GetOutput());
-    
-  typedef itk::RescaleIntensityImageFilter
-      < LabelledImageType, LabelledImageType > RescaleType;
-  RescaleType::Pointer rescaleFilter = RescaleType::New();
-  rescaleFilter->SetOutputMinimum(0);
-  rescaleFilter->SetOutputMaximum(255);
-  
-  rescaleFilter->SetInput( markovFilter->GetOutput() );
-  
-  writer->SetInput( rescaleFilter->GetOutput() );
-  
-  // Software Guide : EndCodeSnippet
-  
-  // Software Guide : BeginLatex
-  //
-  // Finally, the pipeline execution is trigerred.
-  //
-  // Software Guide : EndLatex
-  
-  // Software Guide : BeginCodeSnippet
-  
-  writer->Update();  
-  
-  // Software Guide : EndCodeSnippet
-  
-  // Software Guide : BeginLatex
-  //
-  // Figure~\ref{fig:MRF_CLASSIFICATION1} shows the output of the Markov Random
-  // Field classification after 20 iterations with a 
-  // random sampler and a Metropolis optimizer.
-  //
-  // \begin{figure}
-  // \center
-  // \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
-  // \includegraphics[width=0.44\textwidth]{MarkovClassification1.eps}
-  // \itkcaption[MRF restauration]{Result of applying
-  // the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
-  // image for classification. The result is obtained after 20 iterations with a 
-  // random sampler and a Metropolis optimizer. From left to right : original image,
-  // classification.}  
-  // \label{fig:MRF_CLASSIFICATION1} 
-  // \end{figure}
-  //
-  // Software Guide : EndLatex
-  
-  return EXIT_SUCCESS;
-  
-}
-
diff --git a/Examples/Markov/MarkovClassification2Example.cxx b/Examples/Markov/MarkovClassification2Example.cxx
deleted file mode 100755
index dbf41aa46f0161f9cd0bdceea7951e32e7aa3df9..0000000000000000000000000000000000000000
--- a/Examples/Markov/MarkovClassification2Example.cxx
+++ /dev/null
@@ -1,213 +0,0 @@
-
-/*=========================================================================
-
-  Program:   ORFEO Toolbox
-  Language:  C++
-  Date:      $Date$
-  Version:   $Revision$
-
-
-  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
-  See OTBCopyright.txt for details.
-
-
-     This software is distributed WITHOUT ANY WARRANTY; without even 
-     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
-     PURPOSE.  See the above copyright notices for more information.
-
-=========================================================================*/
-#if defined(_MSC_VER)
-#pragma warning ( disable : 4786 )
-#endif
-
-#ifdef __BORLANDC__
-#define ITK_LEAN_AND_MEAN
-#endif
-
-//  Software Guide : BeginCommandLineArgs
-//    INPUTS: {QB_Suburb.png}
-//    OUTPUTS: {MarkovClassification1.png}
-//    1.0 5
-//  Software Guide : EndCommandLineArgs
-
-
-// Software Guide : BeginLatex
-//
-// Using a similar structure as the previous program and the same energy 
-// function, we are now going to slightly alter the program to use a 
-// different sampler and optimizer. The proposed sample is proposed
-// randomly according to the MAP probability and the optimizer is the
-// ICM which accept the proposed sample if it enable a reduction of
-// the energy.
-//
-// Software Guide : EndLatex 
-
-#include "otbImageFileReader.h"
-#include "otbImageFileWriter.h"
-#include "otbImage.h"
-#include "otbMarkovRandomFieldFilter.h"
-#include "itkRescaleIntensityImageFilter.h"
-
-
-// Software Guide : BeginLatex
-//
-// First, we need to include header specific to these class:
-//
-// Software Guide : EndLatex 
-
-
-#include "otbMRFEnergyPotts.h"
-#include "otbMRFEnergyGaussianClassification.h"
-
-// Software Guide : BeginCodeSnippet
-#include "otbMRFSamplerRandomMAP.h"
-#include "otbMRFOptimizerICM.h"
-// Software Guide : EndCodeSnippet
-//#include "otbMRFSamplerRandom.h"
-
-int main(int argc, char* argv[] ) 
-{
-  
-  if( argc != 5 )
-  {
-    std::cerr << "Missing Parameters " << std::endl;
-    std::cerr << "Usage: " << argv[0];
-    std::cerr << " inputImage output lambda iterations" << std::endl;
-    return 1;
-  }
-
-  const unsigned int Dimension = 2;
-  
-  typedef double InternalPixelType;
-  typedef unsigned char LabelledPixelType;
-  typedef otb::Image<InternalPixelType, Dimension>  InputImageType;
-  typedef otb::Image<LabelledPixelType, Dimension>    LabelledImageType;
-
-  typedef otb::ImageFileReader< InputImageType >  ReaderType;
-  typedef otb::ImageFileWriter< LabelledImageType >  WriterType;
-  
-  ReaderType::Pointer reader = ReaderType::New();
-  WriterType::Pointer writer = WriterType::New();
-  
-  const char * inputFilename  = argv[1];
-  const char * outputFilename = argv[2];
-  
-  reader->SetFileName( inputFilename );
-  writer->SetFileName( outputFilename );
-
-  typedef otb::MarkovRandomFieldFilter
-	  <InputImageType,LabelledImageType> MarkovRandomFieldFilterType;
-
-
-  //  Software Guide : BeginLatex
-  //
-  //  And to declare these new type:
-  //
-  //  Software Guide : EndLatex 
-
-  // Software Guide : BeginCodeSnippet
-
-  typedef otb::MRFSamplerRandomMAP< InputImageType, LabelledImageType> SamplerType;
-//   typedef otb::MRFSamplerRandom< InputImageType, LabelledImageType> SamplerType;
-  
-  // Software Guide : EndCodeSnippet
-
-
-  // Software Guide : BeginCodeSnippet
-
-  typedef otb::MRFOptimizerICM OptimizerType;
-
-  // Software Guide : EndCodeSnippet
-
-  typedef otb::MRFEnergyPotts
-		  <LabelledImageType, LabelledImageType>  EnergyRegularizationType;
-  typedef otb::MRFEnergyGaussianClassification
-		  <InputImageType, LabelledImageType>  EnergyFidelityType;
-
-  MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
-  EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
-  EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
-  OptimizerType::Pointer optimizer = OptimizerType::New();
-  SamplerType::Pointer sampler = SamplerType::New();
-
-  // Overpass random calculation(for test only):
-  sampler->InitializeSeed(0);
-  markovFilter->InitializeSeed(0);
-  
-  unsigned int nClass = 4;
-  energyFidelity->SetNumberOfParameters(2*nClass); 
-  EnergyFidelityType::ParametersType parameters;
-  parameters.SetSize(energyFidelity->GetNumberOfParameters());
-  parameters[0]=10.0; //Class 0 mean
-  parameters[1]=10.0; //Class 0 stdev
-  parameters[2]=80.0;//Class 1 mean
-  parameters[3]=10.0; //Class 1 stdev
-  parameters[4]=150.0; //Class 2 mean
-  parameters[5]=10.0; //Class 2 stdev
-  parameters[6]=220.0;//Class 3 mean
-  parameters[7]=10.0; //Class 3 stde
-  energyFidelity->SetParameters(parameters);
-  
-  
-  // Software Guide : BeginLatex
-  //
-  // As the \doxygen{otb}{MRFOptimizerICM} does not have any parameters,
-  // the call to \code{optimizer->SetParameters()} must be removed
-  //
-  // Software Guide : EndLatex
-  
-  markovFilter->SetNumberOfClasses(nClass);  
-  markovFilter->SetMaximumNumberOfIterations(atoi(argv[4]));
-  markovFilter->SetErrorTolerance(0.0);
-  markovFilter->SetLambda(atof(argv[3]));
-  markovFilter->SetNeighborhoodRadius(1);
-  
-  markovFilter->SetEnergyRegularization(energyRegularization);
-  markovFilter->SetEnergyFidelity(energyFidelity);
-  markovFilter->SetOptimizer(optimizer);
-  markovFilter->SetSampler(sampler);
-  
-  markovFilter->SetInput(reader->GetOutput());
-    
-  typedef itk::RescaleIntensityImageFilter
-      < LabelledImageType, LabelledImageType > RescaleType;
-  RescaleType::Pointer rescaleFilter = RescaleType::New();
-  rescaleFilter->SetOutputMinimum(0);
-  rescaleFilter->SetOutputMaximum(255);
-  
-  rescaleFilter->SetInput( markovFilter->GetOutput() );
-  
-  writer->SetInput( rescaleFilter->GetOutput() );
-  
-  writer->Update();
-  
-  // Software Guide : BeginLatex
-  //
-  // Apart from these, no further modification is required.
-  //
-  // Software Guide : EndLatex
-  
-  // Software Guide : BeginLatex
-  //
-  // Figure~\ref{fig:MRF_CLASSIFICATION2} shows the output of the Markov Random
-  // Field classification after 5 iterations with a 
-  // MAP random sampler and an ICM optimizer.
-  //
-  // \begin{figure}
-  // \center
-  // \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
-  // \includegraphics[width=0.44\textwidth]{MarkovClassification2.eps}
-  // \itkcaption[MRF restauration]{Result of applying
-  // the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
-  // image for classification. The result is obtained after 5 iterations with a 
-  // MAP random sampler and an ICM optimizer. From left to right : original image,
-  // classification.}  
-  // \label{fig:MRF_CLASSIFICATION2} 
-  // \end{figure}
-  //
-  // Software Guide : EndLatex
-  
-  return EXIT_SUCCESS;
-  
-}
-
diff --git a/Examples/Markov/MarkovRestaurationExample.cxx b/Examples/Markov/MarkovRestaurationExample.cxx
index cbc5146399d5ba4306e72c27ff2ad03cd05908f3..20a0dbf5f38b07fc50f3f23b21d8cb8fba7920fe 100755
--- a/Examples/Markov/MarkovRestaurationExample.cxx
+++ b/Examples/Markov/MarkovRestaurationExample.cxx
@@ -1,4 +1,3 @@
-
 /*=========================================================================
 
   Program:   ORFEO Toolbox
diff --git a/Examples/Markov/otbMarkovExamplesTests.cxx b/Examples/Markov/otbMarkovExamplesTests.cxx
index 0ea76c9a1363345e802a2f179f2c1c0f40de1308..ebba1e109bd6ea1fa7784d60c9c5abcf3ff414ec 100644
--- a/Examples/Markov/otbMarkovExamplesTests.cxx
+++ b/Examples/Markov/otbMarkovExamplesTests.cxx
@@ -25,19 +25,19 @@
 
 void RegisterTests()
 {
-  REGISTER_TEST(MarkovClassification1ExampleTest);
-  REGISTER_TEST(MarkovClassification2ExampleTest);
+  REGISTER_TEST(MarkovRandomField1ExampleTest);
+  REGISTER_TEST(MarkovRandomField2ExampleTest);
   REGISTER_TEST(MarkovRestaurationExampleTest);
   REGISTER_TEST(MarkovRegularizationExampleTest);
 }
 
 #undef main
-#define main MarkovClassification1ExampleTest
-#include "MarkovClassification1Example.cxx"
+#define main MarkovRandomField1ExampleTest
+#include "MarkovRandomField1Example.cxx"
  
 #undef main
-#define main MarkovClassification2ExampleTest
-#include "MarkovClassification2Example.cxx"
+#define main MarkovRandomField2ExampleTest
+#include "MarkovRandomField2Example.cxx"
  
 #undef main
 #define main MarkovRestaurationExampleTest