diff --git a/Examples/DimensionReduction/ICAExample.cxx b/Examples/DimensionReduction/ICAExample.cxx index c8b77c13100d189f2f56e02959fc131ae5a0fce1..fccd534921b7749a735072ec55bf98aaa0b8f2db 100644 --- a/Examples/DimensionReduction/ICAExample.cxx +++ b/Examples/DimensionReduction/ICAExample.cxx @@ -31,16 +31,16 @@ // // This example illustrates the use of the // \doxygen{otb}{FastICAImageFilter}. -// This filter computes a Fast Independant Components Analysis transform. +// This filter computes a Fast Independent Components Analysis transform. // // Like Principal Components Analysis, Independent Component Analysis // \cite{jutten1991blind} computes a set of // orthogonal linear combinations, but the criterion of Fast ICA is // different: instead of maximizing variance, it tries to maximize -// stastistical independance between components. +// statistical independence between components. // // In the Fast ICA algorithm \cite{hyvarinen1999fast}, -// statistical independance is mesured by evaluating non-Gaussianity +// statistical independence is measured by evaluating non-Gaussianity // of the components, and the maximization is done in an iterative way. // The first step required to use this filter is to include its header file. @@ -68,9 +68,9 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // - // We start by defining the types for the images and the reader and + // We start by defining the types for the images, the reader, and // the writer. We choose to work with a \doxygen{otb}{VectorImage}, - // since we will produce a multi-channel image (the principal + // since we will produce a multi-channel image (the independent // components) from a multi-channel input image. // // Software Guide : EndLatex @@ -108,8 +108,8 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // - // We then set the number of principal - // components required as output. We can choose to get less PCs than + // We then set the number of independent + // components required as output. We can choose to get less ICs than // the number of input bands. // // Software Guide : EndLatex @@ -194,7 +194,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // Figure~\ref{fig:FastICA_FILTER} shows the result of applying forward - // and reverse FastICA transformation to a 8 bands Wordlview2 image. + // and reverse FastICA transformation to a 8 bands Worldview2 image. // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{FastICA-input-pretty.eps} diff --git a/Examples/DimensionReduction/MNFExample.cxx b/Examples/DimensionReduction/MNFExample.cxx index 466bc969f1fcef909d9550fd8465dfc86c13b406..0362784e04f67ff1a54b8bf0f1feb008c93099b4 100644 --- a/Examples/DimensionReduction/MNFExample.cxx +++ b/Examples/DimensionReduction/MNFExample.cxx @@ -81,7 +81,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // - // We start by defining the types for the images and the reader and + // We start by defining the types for the images, the reader, and // the writer. We choose to work with a \doxygen{otb}{VectorImage}, // since we will produce a multi-channel image (the principal // components) from a multi-channel input image. @@ -231,7 +231,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // Figure~\ref{fig:MNF_FILTER} shows the result of applying forward - // and reverse MNF transformation to a 8 bands Wordlview2 image. + // and reverse MNF transformation to a 8 bands Worldview2 image. // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{MNF-input-pretty.eps} diff --git a/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx b/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx index 752826e4a7a9364c4e9b2b232135d4bb35633dea..32ea62cb42eb8812269677c4122141d21453c616 100644 --- a/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx +++ b/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx @@ -68,7 +68,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // // We can now declare the types for the reader. Since the images - // can be vey large, we will force the pipeline to use + // can be very large, we will force the pipeline to use // streaming. For this purpose, the file writer will be // streamed. This is achieved by using the // \doxygen{otb}{StreamingImageFileWriter} class. diff --git a/Examples/DimensionReduction/NAPCAExample.cxx b/Examples/DimensionReduction/NAPCAExample.cxx index 629c023b8d815a17978b182faa6a75ae85fa8486..ada3a8d1bbf1a86d1ae7ebaedae6574fa451066c 100644 --- a/Examples/DimensionReduction/NAPCAExample.cxx +++ b/Examples/DimensionReduction/NAPCAExample.cxx @@ -43,6 +43,7 @@ // // The second Principal Component Analysis is then applied to the // noise-whitened image, giving the Maximum Noise Fraction transform. +// Applying PCA on noise-whitened image consists in ranking Principal Components according to signal to noise ratio. // // It is basically a reformulation of the Maximum Noise Fraction algorithm. // @@ -81,7 +82,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // - // We start by defining the types for the images and the reader and + // We start by defining the types for the images, the reader and // the writer. We choose to work with a \doxygen{otb}{VectorImage}, // since we will produce a multi-channel image (the principal // components) from a multi-channel input image. @@ -232,7 +233,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // Figure~\ref{fig:NAPCA_FILTER} shows the result of applying forward - // and reverse NA-PCA transformation to a 8 bands Wordlview2 image. + // and reverse NA-PCA transformation to a 8 bands Worldview2 image. // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{napca-input-pretty.eps} diff --git a/Examples/DimensionReduction/PCAExample.cxx b/Examples/DimensionReduction/PCAExample.cxx index aa3bf14cf6cb0d628b3346c69fe8e72c0cdebdd1..02699b35569a46fa2ff4ea845880dd1d8fba02ee 100644 --- a/Examples/DimensionReduction/PCAExample.cxx +++ b/Examples/DimensionReduction/PCAExample.cxx @@ -97,7 +97,10 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // // The only parameter needed for the PCA is the number of principal - // components required as output. We can choose to get less PCs than + // components required as output. Principal components are linear combination of input components + // (here the input image bands), + // which are selected using Singular Value Decomposition eigen vectors sorted by eigen value. + // We can choose to get less Principal Components than // the number of input bands. // // Software Guide : EndLatex @@ -157,7 +160,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // Figure~\ref{fig:PCA_FILTER} shows the result of applying forward - // and reverse PCA transformation to a 8 bands Wordlview2 image. + // and reverse PCA transformation to a 8 bands Worldview2 image. // \begin{figure} // \center // \includegraphics[width=0.32\textwidth]{input-pretty.eps}