diff --git a/Examples/ChangeDetection/otbMultivariateAlterationDetectorExample.cxx b/Examples/ChangeDetection/otbMultivariateAlterationDetectorExample.cxx index 3c77125890d87dafd2cf94b9036d77e58c7d070f..acf11d640b008c97b7633ab15d7e7d92cde73823 100644 --- a/Examples/ChangeDetection/otbMultivariateAlterationDetectorExample.cxx +++ b/Examples/ChangeDetection/otbMultivariateAlterationDetectorExample.cxx @@ -28,7 +28,7 @@ // // Software Guide : EndCommandLineArgs -// Software Guide : BeginLatex +// Software Guide : BeginLatex // This example illustrates the class // \doxygen{otb}{MultivariateAlterationChangeDetectorImageFilter}, // which implements the Multivariate Alteration Change Detector diff --git a/Examples/DimensionReduction/ICAExample.cxx b/Examples/DimensionReduction/ICAExample.cxx index 5078a9793f1881f4bb8e1fb758e3be56b7adda58..bc3d10ae2f4e38f695aff6dede61b487b01700b8 100644 --- a/Examples/DimensionReduction/ICAExample.cxx +++ b/Examples/DimensionReduction/ICAExample.cxx @@ -178,7 +178,7 @@ int main(int argc, char* argv[]) invFilter->SetMeanValues( FastICAfilter->GetMeanValues() ); invFilter->SetStdDevValues( FastICAfilter->GetStdDevValues() ); invFilter->SetTransformationMatrix( FastICAfilter->GetTransformationMatrix() ); - invFilter->SetPCATransformationMatrix( + invFilter->SetPCATransformationMatrix( FastICAfilter->GetPCATransformationMatrix() ); invFilter->SetInput(FastICAfilter->GetOutput()); diff --git a/Examples/DimensionReduction/MNFExample.cxx b/Examples/DimensionReduction/MNFExample.cxx index bc4d6df8500e3ab770ef42749d9050fbe48272ed..0d56269f0889c214540066633c622d2aeba28c9c 100644 --- a/Examples/DimensionReduction/MNFExample.cxx +++ b/Examples/DimensionReduction/MNFExample.cxx @@ -39,7 +39,7 @@ // Components Analysis transform. The first transform is based on an // estimated covariance matrix of the noise, and intends to whiten the // input image (noise with unit variance and no correlation between -// bands). +// bands). // // The second Principal Components Analysis is then applied to the // noise-whitened image, giving the Minimum Noise Fraction transform. @@ -110,7 +110,7 @@ int main(int argc, char* argv[]) // // Software Guide : EndLatex - // SoftwareGuide : BeginCodeSnippet + // SoftwareGuide : BeginCodeSnippet typedef otb::LocalActivityVectorImageFilter<ImageType,ImageType> NoiseFilterType; // SoftwareGuide : EndCodeSnippet diff --git a/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx b/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx index 6dd258860a20ba5981a94e8f6b9a87b37a1f801f..2a96ec70c18fba7f48edfb77c9f8e5bc26d7b584 100644 --- a/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx +++ b/Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx @@ -26,7 +26,7 @@ // // Software Guide : EndCommandLineArgs -// Software Guide : BeginLatex +// Software Guide : BeginLatex // This example illustrates the class // \doxygen{otb}{MaximumAutocorrelationFactorImageFilter}, which // performs a Maximum Autocorrelation Factor transform \cite{nielsen2011kernel}. Like @@ -36,7 +36,7 @@ // // Auto-correlation is the correlation between the component and a // unitary shifted version of the component. -// +// // Please note that the inverse transform is not implemented yet. // // We start by including the corresponding header file. @@ -166,17 +166,17 @@ int main(int argc, char* argv[]) inputVisuWriter->Update(); outputVisuWriter->Update(); - // Software Guide : BeginLatex + // Software Guide : BeginLatex // Figure \ref{fig:MAFFIG} shows the // results of Maximum Autocorrelation Factor applied to an 8 bands - // Worldview2 image. + // Worldview2 image. // \begin{figure} // \center \includegraphics[width=0.32\textwidth]{maf-input.eps} // \includegraphics[width=0.32\textwidth]{maf-output.eps} // \itkcaption[Maximum Autocorrelation Factor results]{Results of the // Maximum Autocorrelation Factor algorithm applied to a 8 bands // Worldview2 image (3 first components).} \label{fig:MAFFIG} - // \end{figure} + // \end{figure} // Software Guide : EndLatex return EXIT_SUCCESS; diff --git a/Examples/DimensionReduction/NAPCAExample.cxx b/Examples/DimensionReduction/NAPCAExample.cxx index 6ecc58b916ab2c1da849393ba0b6217da1f3efa3..448b766e91838aeb2d4316aedbc47876f0897c14 100644 --- a/Examples/DimensionReduction/NAPCAExample.cxx +++ b/Examples/DimensionReduction/NAPCAExample.cxx @@ -99,7 +99,7 @@ int main(int argc, char* argv[]) // // Software Guide : EndLatex - // SoftwareGuide : BeginCodeSnippet + // SoftwareGuide : BeginCodeSnippet typedef otb::LocalActivityVectorImageFilter<ImageType,ImageType> NoiseFilterType; // SoftwareGuide : EndCodeSnippet diff --git a/Examples/OBIA/RadiometricAttributesLabelMapFilterExample.cxx b/Examples/OBIA/RadiometricAttributesLabelMapFilterExample.cxx index fb8dc88f59889903ad83c3ba28fdc54f6b75234a..c82eae5c36403acb5ddf2cbeef3df73651ca633e 100644 --- a/Examples/OBIA/RadiometricAttributesLabelMapFilterExample.cxx +++ b/Examples/OBIA/RadiometricAttributesLabelMapFilterExample.cxx @@ -86,7 +86,7 @@ int main(int argc, char * argv[]) // Labeled image type typedef unsigned short LabelType; - typedef unsigned char MaskPixelType; + typedef unsigned char MaskPixelType; typedef double PixelType; typedef otb::Image<LabelType, Dimension> LabeledImageType; typedef otb::Image<MaskPixelType, Dimension> MaskImageType;