diff --git a/Code/BasicFilters/otbInverseLogPolarTransform.h b/Code/BasicFilters/otbInverseLogPolarTransform.h
index d26ed34fd99b98674c00d6aed7a41cc555cf5428..066973e655e99ccab8b5c7c9623097c533a4d961 100644
--- a/Code/BasicFilters/otbInverseLogPolarTransform.h
+++ b/Code/BasicFilters/otbInverseLogPolarTransform.h
@@ -27,8 +27,8 @@ namespace otb
    *
    * Given (x,y) the coordinates of a point in cartesian system, the corresponding
    * log-polar coordinates are :
-   * Rho = 1/2*log((x-xc)²+(y+yc)²)
-   * Theta = asin(y-yc)/(sqrt((x-xc)²+(y+yc)²))
+   * \f$ \rho = 1/2*log((x-xc)^2+(y+yc)^2) \f$
+   * \f$ \theta = asin(y-yc)/(\sqrt{(x-xc)^2+(y+yc)^2}) \f$
    *
    * In this implemenatation, theta is expressed in degree, and the result of the asin function
    * is clamped to the [0,360] range. Please note that since the transform of the center has no meaning