Commit 5b8ea19d authored by Victor Poughon's avatar Victor Poughon
Browse files

DOC: fix math markup

parent bca81855
......@@ -149,94 +149,94 @@ For each option parameter, the list below gives the formula used.
#. msinclairtocoherency (SinclairToReciprocalCoherencyMatrixFunctor)
#. :math:` 0.5 . (S_{hh}+S_{vv}).(S_{hh}+S_{vv})^{*} `
#. :math:`0.5 . (S_{hh}+S_{vv}).(S_{hh}+S_{vv})^{*}`
#. :math:` 0.5 . (S_{hh}+S_{vv}).(S_{hh}-S_{vv})^{*} `
#. :math:`0.5 . (S_{hh}+S_{vv}).(S_{hh}-S_{vv})^{*}`
#. :math:` 0.5 . (S_{hh}+S_{vv}).(2 S_{hv})^{*} `
#. :math:`0.5 . (S_{hh}+S_{vv}).(2 S_{hv})^{*}`
#. :math:` 0.5 . (S_{hh}-S_{vv}).(S_{hh}-S_{vv})^{*} `
#. :math:`0.5 . (S_{hh}-S_{vv}).(S_{hh}-S_{vv})^{*}`
#. :math:` 0.5 . (S_{hh}-S_{vv}).(2 S_{hv})^{*} `
#. :math:`0.5 . (S_{hh}-S_{vv}).(2 S_{hv})^{*}`
#. :math:` 0.5 . (2 S_{hv}).(2 S_{hv})^{*} `
#. :math:`0.5 . (2 S_{hv}).(2 S_{hv})^{*}`
#. msinclairtocovariance (SinclairToReciprocalCovarianceMatrixFunctor)
#. :math:` S_{hh}.S_{hh}^{*} `
#. :math:`S_{hh}.S_{hh}^{*}`
#. :math:` \sqrt{2}.S_{hh}.S_{hv}^{*} `
#. :math:`\sqrt{2}.S_{hh}.S_{hv}^{*}`
#. :math:` S_{hh}.S_{vv}^{*} `
#. :math:`S_{hh}.S_{vv}^{*}`
#. :math:` 2.S_{hv}.S_{hv}^{*} `
#. :math:`2.S_{hv}.S_{hv}^{*}`
#. :math:` \sqrt{2}.S_{hv}.S_{vv}^{*} `
#. :math:`\sqrt{2}.S_{hv}.S_{vv}^{*}`
#. :math:` S_{vv}.S_{vv}^{*} `
#. :math:`S_{vv}.S_{vv}^{*}`
#. msinclairtocircovariance
(SinclairToReciprocalCircularCovarianceMatrixFunctor)
#. :math:` S_{ll}.S_{ll}^{*} `
#. :math:`S_{ll}.S_{ll}^{*}`
#. :math:` S_{ll}.S_{lr}^{*} `
#. :math:`S_{ll}.S_{lr}^{*}`
#. :math:` S_{ll}.S_{rr}^{*} `
#. :math:`S_{ll}.S_{rr}^{*}`
#. :math:` S_{lr}.S_{lr}^{*} `
#. :math:`S_{lr}.S_{lr}^{*}`
#. :math:` S_{lr}.S_{rr}^{*} `
#. :math:`S_{lr}.S_{rr}^{*}`
#. :math:` S_{rr}.S_{rr}^{*} `
#. :math:`S_{rr}.S_{rr}^{*}`
With:
- :math:` S_{ll} = 0.5(S_{hh}+2j S_{hv}-S_{vv}) `
- :math:`S_{ll} = 0.5(S_{hh}+2j S_{hv}-S_{vv})`
- :math:` S_{lr} = 0.5(j S_{hh}+j S_{vv}) `
- :math:`S_{lr} = 0.5(j S_{hh}+j S_{vv})`
- :math:` S_{rr} = 0.5(-S_{hh}+2j S_{hv}+S_{vv}) `
- :math:`S_{rr} = 0.5(-S_{hh}+2j S_{hv}+S_{vv})`
#. mcoherencytomueller (ReciprocalCoherencyToReciprocalMuellerFunctor)
#. :math:` 0.5*( C_{11}+C_{22}+C_{33} ) `
#. :math:`0.5*( C_{11}+C_{22}+C_{33} )`
#. :math:` Re(C_{12}) + Im(C_{22}) `
#. :math:`Re(C_{12}) + Im(C_{22})`
#. :math:` Re(C_{13}) `
#. :math:`Re(C_{13})`
#. :math:` Im(C_{23}) `
#. :math:`Im(C_{23})`
#. :math:` Re(C_{12}) `
#. :math:`Re(C_{12})`
#. :math:` 0.5*( C_{11}+C_{22}-C_{33} ) `
#. :math:`0.5*( C_{11}+C_{22}-C_{33} )`
#. :math:` Re(C_{23}) `
#. :math:`Re(C_{23})`
#. :math:` Im(C_{13}) `
#. :math:`Im(C_{13})`
#. :math:` -Re(C_{13}) `
#. :math:`-Re(C_{13})`
#. :math:` -Re(C_{23}) `
#. :math:`-Re(C_{23})`
#. :math:` 0.5.Re(VAL1) `
#. :math:`0.5.Re(VAL1)`
#. :math:` 0.5.Im(VAL0) `
#. :math:`0.5.Im(VAL0)`
#. :math:` Im(C_{23}) `
#. :math:`Im(C_{23})`
#. :math:` Im(C_{13}) `
#. :math:`Im(C_{13})`
#. :math:` 0.5.Im(VAL1^{*}) `
#. :math:`0.5.Im(VAL1^{*})`
#. :math:` 0.5.Re(VAL0) `
#. :math:`0.5.Re(VAL0)`
With:
- :math:` VAL0 = C_{33}+C_{12}-C_{11}-(C_{12}-C_{22})^{*} `
- :math:`VAL0 = C_{33}+C_{12}-C_{11}-(C_{12}-C_{22})^{*}`
- :math:` VAL1 = -C_{33}+C_{12}-C_{11}-(C_{12}-C_{22})^{*} `
- :math:`VAL1 = -C_{33}+C_{12}-C_{11}-(C_{12}-C_{22})^{*}`
Where :math:`C_{ij}` are related to the elements of the reciprocal
coherence matrix.
......@@ -244,26 +244,26 @@ For each option parameter, the list below gives the formula used.
#. mcovariancetocoherencydegree
(ReciprocalCovarianceToCoherencyDegreeFunctor)
#. :math:` abs(S_{hh}.S_{vv}^{*}) / sqrt(S_{hh}.S_{hh}^{*}) / sqrt(S_{vv}.S_{vv}^{*}) `
#. :math:`abs(S_{hh}.S_{vv}^{*}) / sqrt(S_{hh}.S_{hh}^{*}) / sqrt(S_{vv}.S_{vv}^{*})`
#. :math:` abs(S_{hv}.S_{vv}^{*}) / sqrt(S_{hv}.S_{hv}^{*}) / sqrt(S_{vv}.S_{vv}^{*}) `
#. :math:`abs(S_{hv}.S_{vv}^{*}) / sqrt(S_{hv}.S_{hv}^{*}) / sqrt(S_{vv}.S_{vv}^{*})`
#. :math:` abs(S_{hh}.S_{hv}^{*}) / sqrt(S_{hh}.S_{hh}^{*}) / sqrt(S_{hv}.S_{hv}^{*}) `
#. :math:`abs(S_{hh}.S_{hv}^{*}) / sqrt(S_{hh}.S_{hh}^{*}) / sqrt(S_{hv}.S_{hv}^{*})`
#. mcovariancetocoherency
(ReciprocalCovarianceToReciprocalCoherencyFunctor)
#. :math:` 0.5 . ( C_{33} + C_{13} + C_{13}^{*} + C_{11} ) `
#. :math:`0.5 . ( C_{33} + C_{13} + C_{13}^{*} + C_{11} )`
#. :math:` 0.5 . ( -C_{33} - C_{13} + C_{13}^{*} + C_{11} ) `
#. :math:`0.5 . ( -C_{33} - C_{13} + C_{13}^{*} + C_{11} )`
#. :math:` 0.5 . ( \sqrt{2}.C_{12} + \sqrt{2}.C_{23}^{*} ) `
#. :math:`0.5 . ( \sqrt{2}.C_{12} + \sqrt{2}.C_{23}^{*} )`
#. :math:` 0.5 . ( C_{33} - C_{13} - C_{13}^{*} + C_{11} ) `
#. :math:`0.5 . ( C_{33} - C_{13} - C_{13}^{*} + C_{11} )`
#. :math:` 0.5 . ( \sqrt{2}.C_{12} - \sqrt{2}.C_{23}^{*} ) `
#. :math:`0.5 . ( \sqrt{2}.C_{12} - \sqrt{2}.C_{23}^{*} )`
#. :math:` 0.5 . ( 2 . C_{22} ) `
#. :math:`0.5 . ( 2 . C_{22} )`
Where :math:`C_{ij}` are related to the elements of the reciprocal
linear covariance matrix.
......@@ -271,168 +271,168 @@ For each option parameter, the list below gives the formula used.
#. mlinearcovariancetocircularcovariance
(ReciprocalLinearCovarianceToReciprocalCircularCovarianceFunctor)
#. :math:` 0.25 . ( C_{33}-i.\sqrt{2}.C_{23}-C_{13}+i.\sqrt{2}.C_{23}^{*}-C_{13}^{*}+2.C_{22}-i.\sqrt{2}.C_{12}+i.\sqrt{2}.C_{12}^{*}+C_{11} ) `
#. :math:`0.25 . ( C_{33}-i.\sqrt{2}.C_{23}-C_{13}+i.\sqrt{2}.C_{23}^{*}-C_{13}^{*}+2.C_{22}-i.\sqrt{2}.C_{12}+i.\sqrt{2}.C_{12}^{*}+C_{11} )`
#. :math:` 0.25 . ( i.\sqrt{2}.C_{33}+2.C_{23}-i.\sqrt{2}.C_{13}+i.\sqrt{2}.C_{13}^{*}+2.C_{12}^{*}-i.\sqrt{2}.C_{11} ) `
#. :math:`0.25 . ( i.\sqrt{2}.C_{33}+2.C_{23}-i.\sqrt{2}.C_{13}+i.\sqrt{2}.C_{13}^{*}+2.C_{12}^{*}-i.\sqrt{2}.C_{11} )`
#. :math:` 0.25 . ( -C_{33}+i.\sqrt{2}.C_{23}+C_{13}+i.\sqrt{2}.C_{23}^{*}+C_{13}^{*}+2.C_{22}-i.\sqrt{2}.C_{12}-i.\sqrt{2}.C_{12}^{*}-C_{11} ) `
#. :math:`0.25 . ( -C_{33}+i.\sqrt{2}.C_{23}+C_{13}+i.\sqrt{2}.C_{23}^{*}+C_{13}^{*}+2.C_{22}-i.\sqrt{2}.C_{12}-i.\sqrt{2}.C_{12}^{*}-C_{11} )`
#. :math:` 0.25 . ( 2.C_{33}+2.C_{13}+2.C_{13}^{*}+2.C_{11} ) `
#. :math:`0.25 . ( 2.C_{33}+2.C_{13}+2.C_{13}^{*}+2.C_{11} )`
#. :math:` 0.25 . ( i.\sqrt{2}.C_{33}+i.\sqrt{2}.C_{13}+2.C_{23}^{*}-i.\sqrt{2}.C_{13}^{*}+2.C_{12}-i.\sqrt{2}.C_{11} ) `
#. :math:`0.25 . ( i.\sqrt{2}.C_{33}+i.\sqrt{2}.C_{13}+2.C_{23}^{*}-i.\sqrt{2}.C_{13}^{*}+2.C_{12}-i.\sqrt{2}.C_{11} )`
#. :math:` 0.25 . ( C_{33}+i.\sqrt{2}.C_{23}-C_{13}-i.\sqrt{2}.C_{23}^{*}-C_{13}^{*}+2.C_{22}+i.\sqrt{2}.C_{12}-i.\sqrt{2}.C_{12}^{*}+C_{11} ) `
#. :math:`0.25 . ( C_{33}+i.\sqrt{2}.C_{23}-C_{13}-i.\sqrt{2}.C_{23}^{*}-C_{13}^{*}+2.C_{22}+i.\sqrt{2}.C_{12}-i.\sqrt{2}.C_{12}^{*}+C_{11} )`
Where :math:`C_{ij}` are related to the elements of the reciprocal
linear covariance matrix.
#. muellertomcovariance (MuellerToReciprocalCovarianceFunctor)
#. :math:` 0.5.(M_{11}+M_{22}+2.M_{12}) `
#. :math:`0.5.(M_{11}+M_{22}+2.M_{12})`
#. :math:` 0.5.\sqrt{2}.[(M_{13}+M_{23}) + j.(M_{14}+M_{24})] `
#. :math:`0.5.\sqrt{2}.[(M_{13}+M_{23}) + j.(M_{14}+M_{24})]`
#. :math:` -0.5.(M_{33}+M_{44}) - j.M_{34} `
#. :math:`-0.5.(M_{33}+M_{44}) - j.M_{34}`
#. :math:` M_{11}-M_{22} `
#. :math:`M_{11}-M_{22}`
#. :math:` 0.5.\sqrt{2}.[(M_{13}-M_{23}) + j.(M_{14}-M_{24})] `
#. :math:`0.5.\sqrt{2}.[(M_{13}-M_{23}) + j.(M_{14}-M_{24})]`
#. :math:` 0.5.(M_{11}+M_{22}-2.M_{12}) `
#. :math:`0.5.(M_{11}+M_{22}-2.M_{12})`
— Bistatic case —
#. bsinclairtocoherency (SinclairToCoherencyMatrixFunctor)
#. :math:` (S_{hh}+S_{vv}).(S_{hh}+S_{vv})^{*} `
#. :math:`(S_{hh}+S_{vv}).(S_{hh}+S_{vv})^{*}`
#. :math:` (S_{hh}+S_{vv}).(S_{hh}-S_{vv})^{*} `
#. :math:`(S_{hh}+S_{vv}).(S_{hh}-S_{vv})^{*}`
#. :math:` (S_{hh}+S_{vv}).(S_{hv}+S_{vh})^{*} `
#. :math:`(S_{hh}+S_{vv}).(S_{hv}+S_{vh})^{*}`
#. :math:` (S_{hh}+S_{vv}).( j (S_{hv}-S_{vh}))^{*} `
#. :math:`(S_{hh}+S_{vv}).( j (S_{hv}-S_{vh}))^{*}`
#. :math:` (S_{hh}-S_{vv}).(S_{hh}-S_{vv})^{*} `
#. :math:`(S_{hh}-S_{vv}).(S_{hh}-S_{vv})^{*}`
#. :math:` (S_{hh}-S_{vv}).(S_{hv}+S_{vh})^{*} `
#. :math:`(S_{hh}-S_{vv}).(S_{hv}+S_{vh})^{*}`
#. :math:` (S_{hh}-S_{vv}).( j (S_{hv}-S_{vh}))^{*} `
#. :math:`(S_{hh}-S_{vv}).( j (S_{hv}-S_{vh}))^{*}`
#. :math:` (S_{hv}+S_{vh}).(S_{hv}+S_{vh})^{*} `
#. :math:`(S_{hv}+S_{vh}).(S_{hv}+S_{vh})^{*}`
#. :math:` (S_{hv}+S_{vh}).( j (S_{hv}-S_{vh}))^{*} `
#. :math:`(S_{hv}+S_{vh}).( j (S_{hv}-S_{vh}))^{*}`
#. :math:` j (S_{hv}-S_{vh}).( j (S_{hv}-S_{vh}))^{*} `
#. :math:`j (S_{hv}-S_{vh}).( j (S_{hv}-S_{vh}))^{*}`
#. bsinclairtocovariance (SinclairToCovarianceMatrixFunctor)
#. :math:` S_{hh}.S_{hh}^{*} `
#. :math:`S_{hh}.S_{hh}^{*}`
#. :math:` S_{hh}.S_{hv}^{*} `
#. :math:`S_{hh}.S_{hv}^{*}`
#. :math:` S_{hh}.S_{vh}^{*} `
#. :math:`S_{hh}.S_{vh}^{*}`
#. :math:` S_{hh}.S_{vv}^{*} `
#. :math:`S_{hh}.S_{vv}^{*}`
#. :math:` S_{hv}.S_{hv}^{*} `
#. :math:`S_{hv}.S_{hv}^{*}`
#. :math:` S_{hv}.S_{vh}^{*} `
#. :math:`S_{hv}.S_{vh}^{*}`
#. :math:` S_{hv}.S_{vv}^{*} `
#. :math:`S_{hv}.S_{vv}^{*}`
#. :math:` S_{vh}.S_{vh}^{*} `
#. :math:`S_{vh}.S_{vh}^{*}`
#. :math:` S_{vh}.S_{vv}^{*} `
#. :math:`S_{vh}.S_{vv}^{*}`
#. :math:` S_{vv}.S_{vv}^{*} `
#. :math:`S_{vv}.S_{vv}^{*}`
#. bsinclairtocircovariance (SinclairToCircularCovarianceMatrixFunctor)
#. :math:` S_{ll}.S_{ll}^{*} `
#. :math:`S_{ll}.S_{ll}^{*}`
#. :math:` S_{ll}.S_{lr}^{*} `
#. :math:`S_{ll}.S_{lr}^{*}`
#. :math:` S_{ll}.S_{rl}^{*} `
#. :math:`S_{ll}.S_{rl}^{*}`
#. :math:` S_{ll}.S_{rr}^{*} `
#. :math:`S_{ll}.S_{rr}^{*}`
#. :math:` S_{lr}.S_{lr}^{*} `
#. :math:`S_{lr}.S_{lr}^{*}`
#. :math:` S_{lr}.S_{rl}^{*} `
#. :math:`S_{lr}.S_{rl}^{*}`
#. :math:` S_{lr}.S_{rr}^{*} `
#. :math:`S_{lr}.S_{rr}^{*}`
#. :math:` S_{rl}.S_{rl}^{*} `
#. :math:`S_{rl}.S_{rl}^{*}`
#. :math:` S_{rl}.S_{rr}^{*} `
#. :math:`S_{rl}.S_{rr}^{*}`
#. :math:` S_{rr}.S_{rr}^{*} `
#. :math:`S_{rr}.S_{rr}^{*}`
With:
- :math:` S_{ll} = 0.5(S_{hh}+j S_{hv}+j S_{vh}-S_{vv}) `
- :math:`S_{ll} = 0.5(S_{hh}+j S_{hv}+j S_{vh}-S_{vv})`
- :math:` S_{lr} = 0.5(j S_{hh}+S_{hv}-S_{vh}+j S_{vv}) `
- :math:`S_{lr} = 0.5(j S_{hh}+S_{hv}-S_{vh}+j S_{vv})`
- :math:` S_{rl} = 0.5(j S_{hh}-S_{hv}+ S_{vh}+j S_{vv}) `
- :math:`S_{rl} = 0.5(j S_{hh}-S_{hv}+ S_{vh}+j S_{vv})`
- :math:` S_{rr} = 0.5(-S_{hh}+j S_{hv}+j S_{vh}+S_{vv}) `
- :math:`S_{rr} = 0.5(-S_{hh}+j S_{hv}+j S_{vh}+S_{vv})`
— Both cases —
#. sinclairtomueller (SinclairToMueller)
#. :math:` 0.5 Re( T_{xx}.T_{xx}^{*} + T_{xy}.T_{xy}^{*} + T_{yx}.T_{yx}^{*} + T_{yy}.T_{yy}^{*} ) `
#. :math:`0.5 Re( T_{xx}.T_{xx}^{*} + T_{xy}.T_{xy}^{*} + T_{yx}.T_{yx}^{*} + T_{yy}.T_{yy}^{*} )`
#. :math:` 0.5 Re( T_{xx}.T_{xx}^{*} - T_{xy}.T_{xy}^{*} + T_{yx}.T_{yx}^{*} - T_{yy}.T_{yy}^{*} ) `
#. :math:`0.5 Re( T_{xx}.T_{xx}^{*} - T_{xy}.T_{xy}^{*} + T_{yx}.T_{yx}^{*} - T_{yy}.T_{yy}^{*} )`
#. :math:` Re( T_{xx}.T_{xy}^{*} + T_{yx}.T_{yy}^{*} ) `
#. :math:`Re( T_{xx}.T_{xy}^{*} + T_{yx}.T_{yy}^{*} )`
#. :math:` Im( T_{xx}.T_{xy}^{*} + T_{yx}.T_{yy}^{*} ) `
#. :math:`Im( T_{xx}.T_{xy}^{*} + T_{yx}.T_{yy}^{*} )`
#. :math:` 0.5 Re( T_{xx}.T_{xx}^{*} + T_{xy}.T_{xy}^{*} - T_{yx}.T_{yx}^{*} - T_{yy}.T_{yy}^{*} ) `
#. :math:`0.5 Re( T_{xx}.T_{xx}^{*} + T_{xy}.T_{xy}^{*} - T_{yx}.T_{yx}^{*} - T_{yy}.T_{yy}^{*} )`
#. :math:` 0.5 Re( T_{xx}.T_{xx}^{*} - T_{xy}.T_{xy}^{*} - T_{yx}.T_{yx}^{*} + T_{yy}.T_{yy}^{*} ) `
#. :math:`0.5 Re( T_{xx}.T_{xx}^{*} - T_{xy}.T_{xy}^{*} - T_{yx}.T_{yx}^{*} + T_{yy}.T_{yy}^{*} )`
#. :math:` Re( T_{xx}.T_{xy}^{*} - T_{yx}.T_{yy}^{*} ) `
#. :math:`Re( T_{xx}.T_{xy}^{*} - T_{yx}.T_{yy}^{*} )`
#. :math:` Im( T_{xx}.T_{xy}^{*} - T_{yx}.T_{yy}^{*} ) `
#. :math:`Im( T_{xx}.T_{xy}^{*} - T_{yx}.T_{yy}^{*} )`
#. :math:` Re( T_{xx}.T_{yx}^{*} + T_{xy}.T_{yy}^{*} ) `
#. :math:`Re( T_{xx}.T_{yx}^{*} + T_{xy}.T_{yy}^{*} )`
#. :math:` Im( T_{xx}.T_{yx}^{*} - T_{xy}.T_{yy}^{*} ) `
#. :math:`Im( T_{xx}.T_{yx}^{*} - T_{xy}.T_{yy}^{*} )`
#. :math:` Re( T_{xx}.T_{yy}^{*} + T_{xy}.T_{yx}^{*} ) `
#. :math:`Re( T_{xx}.T_{yy}^{*} + T_{xy}.T_{yx}^{*} )`
#. :math:` Im( T_{xx}.T_{yy}^{*} - T_{xy}.T_{yx}^{*} ) `
#. :math:`Im( T_{xx}.T_{yy}^{*} - T_{xy}.T_{yx}^{*} )`
#. :math:` Re( T_{xx}.T_{yx}^{*} + T_{xy}.T_{yy}^{*} ) `
#. :math:`Re( T_{xx}.T_{yx}^{*} + T_{xy}.T_{yy}^{*} )`
#. :math:` Im( T_{xx}.T_{yx}^{*} - T_{xy}.T_{yy}^{*} ) `
#. :math:`Im( T_{xx}.T_{yx}^{*} - T_{xy}.T_{yy}^{*} )`
#. :math:` Re( T_{xx}.T_{yy}^{*} + T_{xy}.T_{yx}^{*} ) `
#. :math:`Re( T_{xx}.T_{yy}^{*} + T_{xy}.T_{yx}^{*} )`
#. :math:` Im( T_{xx}.T_{yy}^{*} - T_{xy}.T_{yx}^{*} ) `
#. :math:`Im( T_{xx}.T_{yy}^{*} - T_{xy}.T_{yx}^{*} )`
With :
- :math:` T_{xx} = -S_{hh} `
- :math:`T_{xx} = -S_{hh}`
- :math:` T_{xy} = -S_{hv} `
- :math:`T_{xy} = -S_{hv}`
- :math:` T_{yx} = S_{vh} `
- :math:`T_{yx} = S_{vh}`
- :math:` T_{yy} = S_{vv} `
- :math:`T_{yy} = S_{vv}`
#. muellertopoldegandpower (MuellerToPolarisationDegreeAndPowerFunctor)
#. :math:` P_{min} `
#. :math:`P_{min}`
#. :math:` P_{max} `
#. :math:`P_{max}`
#. :math:` DegP_{min} `
#. :math:`DegP_{min}`
#. :math:` DegP_{max} `
#. :math:`DegP_{max}`
Examples :
......@@ -549,17 +549,17 @@ Alpha, A(Anisotropy).
Here are the formula used (refer to the previous section about how the
coherence matrix is obtained from the Sinclair one):
#. :math:` entropy = -\sum_{i=0}^{2} \frac{p[i].\log{p[i]}}{\log{3}} `
#. :math:`entropy = -\sum_{i=0}^{2} \frac{p[i].\log{p[i]}}{\log{3}}`
#. :math:` \alpha = \sum_{i=0}^{2} p[i].\alpha_{i} `
#. :math:`\alpha = \sum_{i=0}^{2} p[i].\alpha_{i}`
#. :math:` anisotropy = \frac {SortedEigenValues[1] - SortedEigenValues[2]}{SortedEigenValues[1] + SortedEigenValues[2]} `
#. :math:`anisotropy = \frac {SortedEigenValues[1] - SortedEigenValues[2]}{SortedEigenValues[1] + SortedEigenValues[2]}`
Where:
- :math:` p[i] = max(SortedEigenValues[i], 0) / \sum_{i=0}^{2, SortedEigenValues[i]>0} SortedEigenValues[i] `
- :math:`p[i] = max(SortedEigenValues[i], 0) / \sum_{i=0}^{2, SortedEigenValues[i]>0} SortedEigenValues[i]`
- :math:` \alpha_{i} = \left| SortedEigenVector[i] \right|* \frac{180}{\pi}`
- :math:`\alpha_{i} = \left| SortedEigenVector[i] \right|* \frac{180}{\pi}`
Example :
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment