Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Open sidebar
Main Repositories
otb
Commits
9b518922
Commit
9b518922
authored
Jan 28, 2012
by
Julien Malik
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
DOC: Dimension reduction examples improvements
parent
f94c44eb
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
53 additions
and
16 deletions
+53
-16
Code/BasicFilters/otbMNFImageFilter.h
Code/BasicFilters/otbMNFImageFilter.h
+4
-4
Examples/DimensionReduction/ICAExample.cxx
Examples/DimensionReduction/ICAExample.cxx
+5
-2
Examples/DimensionReduction/MNFExample.cxx
Examples/DimensionReduction/MNFExample.cxx
+17
-6
Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx
Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx
+1
-1
Examples/DimensionReduction/NAPCAExample.cxx
Examples/DimensionReduction/NAPCAExample.cxx
+26
-3
No files found.
Code/BasicFilters/otbMNFImageFilter.h
View file @
9b518922
...
...
@@ -29,15 +29,15 @@
namespace
otb
{
/** \class MNFImageFilter
* \brief Performs a M
in
imum Noise Fraction analysis of a vector image.
* \brief Performs a M
ax
imum Noise Fraction analysis of a vector image.
*
* The internal structure of this filter is a filter-to-filter like structure.
* The estimation of the covariance matrix
has persistent capabilities...
* The estimation of the covariance matrix
is streamed
*
* The high pass filter which has to be used for the noise estimation is templated
* for a better scalability.
..
* for a better scalability.
*
* TODO? Utiliser une 2e entree pour donner directement une image de bruit ?
?
* TODO? Utiliser une 2e entree pour donner directement une image de bruit ?
*
* \sa otbStreamingStatisticsVectorImageFilter
* \sa PCAImageFiler
...
...
Examples/DimensionReduction/ICAExample.cxx
View file @
9b518922
...
...
@@ -33,10 +33,13 @@
// \doxygen{otb}{FastICAImageFilter}.
// This filter computes a Fast Independant Components Analysis transform.
//
// Like Principal Components Analysis, FastICA computes a set of
// Like Principal Components Analysis, Independent Component Analysis
// \cite{jutten1991blind} computes a set of
// orthogonal linear combinations, but the criterion of Fast ICA is
// different: instead of maximizing variance, it tries to maximize
// stastistical independance between components. In Fast ICA,
// stastistical independance between components.
//
// In the Fast ICA algorithm \cite{hyvarinen1999fast},
// statistical independance is mesured by evaluating non-Gaussianity
// of the components, and the maximization is done in an iterative way.
...
...
Examples/DimensionReduction/MNFExample.cxx
View file @
9b518922
...
...
@@ -30,19 +30,19 @@
// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{otb}{MNFImageFilter}. This filter computes a M
in
imum
// Noise Fraction transform \cite{
nielsen2011kernel
} using an
// \doxygen{otb}{MNFImageFilter}. This filter computes a M
ax
imum
// Noise Fraction transform \cite{
green1988transformation
} using an
// efficient method based on the inner product in order to compute the
// covariance matrix.
//
// The M
in
imum Noise Fraction transform is a sequence of two Principal
// Component
s
Analysis transform. The first transform is based on an
// The M
ax
imum Noise Fraction transform is a sequence of two Principal
// Component Analysis transform
s
. The first transform is based on an
// estimated covariance matrix of the noise, and intends to whiten the
// input image (noise with unit variance and no correlation between
// bands).
//
// The second Principal Component
s
Analysis is then applied to the
// noise-whitened image, giving the M
in
imum Noise Fraction transform.
// The second Principal Component Analysis is then applied to the
// noise-whitened image, giving the M
ax
imum Noise Fraction transform.
//
// In this implementation, noise is estimated from a local window.
//
...
...
@@ -106,6 +106,17 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// In contrast with standard Principal Component Analysis, MNF
// needs an estimation of the noise correlation matrix
// in the dataset prior to transformation.
//
// A classical approach is to use spatial gradient images
// and infer the noise correlation matrix from it.
// The method of noise estimation can be customized
// by templating the \doxygen{otb}{MNFImageFilter}
// with the desired noise estimation method.
//
// In this implementation, noise is estimated from a local window.
// We define the type of the noise filter.
//
// Software Guide : EndLatex
...
...
Examples/DimensionReduction/MaximumAutocorrelationFactor.cxx
View file @
9b518922
...
...
@@ -31,7 +31,7 @@
// \doxygen{otb}{MaximumAutocorrelationFactorImageFilter}, which
// performs a Maximum Autocorrelation Factor transform \cite{nielsen2011kernel}. Like
// PCA, MAF tries to find a set of orthogonal linear transform, but
// the criterion to maximize is the auto-correlation rather than the
// the criterion to maximize is the
spatial
auto-correlation rather than the
// variance.
//
// Auto-correlation is the correlation between the component and a
...
...
Examples/DimensionReduction/NAPCAExample.cxx
View file @
9b518922
...
...
@@ -30,11 +30,22 @@
// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{otb}{NAPCAImageFilter}.
//
This filter computes a
Principal Component Analysis using an
// \doxygen{otb}{NAPCAImageFilter}.
This filter computes a Noise-Adjusted
// Principal Component Analysis
transform \cite{lee1990enhancement}
using an
// efficient method based on the inner product in order to compute the
// covariance matrix.
//
// The Noise-Adjusted Principal Component Analysis transform is a sequence
// of two Principal Component Analysis transforms. The first transform is based
// on an estimated covariance matrix of the noise, and intends to whiten the
// input image (noise with unit variance and no correlation between
// bands).
//
// The second Principal Component Analysis is then applied to the
// noise-whitened image, giving the Maximum Noise Fraction transform.
//
// It is basically a reformulation of the Maximum Noise Fraction algorithm.
//
// The first step required to use this filter is to include its header file.
//
// Software Guide : EndLatex
...
...
@@ -95,6 +106,17 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// In contrast with standard Principal Component Analysis, NA-PCA
// needs an estimation of the noise correlation matrix
// in the dataset prior to transformation.
//
// A classical approach is to use spatial gradient images
// and infer the noise correlation matrix from it.
// The method of noise estimation can be customized
// by templating the \doxygen{otb}{NAPCAImageFilter}
// with the desired noise estimation method.
//
// In this implementation, noise is estimated from a local window.
// We define the type of the noise filter.
//
// Software Guide : EndLatex
...
...
@@ -107,7 +129,8 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// We define the type for the filter. It is templated over the input
// and the output image types and also the transformation direction. The
// and the output image types, the noise estimation filter type,
// and also the transformation direction. The
// internal structure of this filter is a filter-to-filter like structure.
// We can now the instantiate the filter.
//
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment