otbImageClassifier.cxx 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbChangeLabelImageFilter.h"
#include "otbStandardWriterWatcher.h"
#include "otbStatisticsXMLFileReader.h"
#include "otbShiftScaleVectorImageFilter.h"
#include "otbImageClassificationFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageToVectorImageCastFilter.h"
#include "otbMachineLearningModelFactory.h"

namespace otb
{
namespace Wrapper
{

class ImageClassifier : public Application
{
public:
  /** Standard class typedefs. */
  typedef ImageClassifier            Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(ImageClassifier, otb::Application);

  /** Filters typedef */
53 54
  //typedef UInt16ImageType                                                                    OutputImageType;
  typedef Int32ImageType                                                                       OutputImageType;
55 56 57 58 59 60 61 62 63 64 65
  typedef UInt8ImageType                                                                       MaskImageType;
  typedef itk::VariableLengthVector<FloatVectorImageType::InternalPixelType>                   MeasurementType;
  typedef otb::StatisticsXMLFileReader<MeasurementType>                                        StatisticsReader;
  typedef otb::ShiftScaleVectorImageFilter<FloatVectorImageType, FloatVectorImageType>         RescalerType;
  typedef otb::ImageClassificationFilter<FloatVectorImageType, OutputImageType, MaskImageType> ClassificationFilterType;
  typedef ClassificationFilterType::Pointer                                                    ClassificationFilterPointerType;
  typedef ClassificationFilterType::ModelType                                                  ModelType;
  typedef ModelType::Pointer                                                                   ModelPointerType;
  typedef ClassificationFilterType::ValueType                                                  ValueType;
  typedef ClassificationFilterType::LabelType                                                  LabelType;
  typedef otb::MachineLearningModelFactory<ValueType, LabelType>                               MachineLearningModelFactoryType;
66
  typedef ClassificationFilterType::ConfidenceImageType                                        ConfidenceImageType;
67

68 69
protected:

70
  ~ImageClassifier() override
71 72 73 74
    {
    MachineLearningModelFactoryType::CleanFactories();
    }

75
private:
76
  void DoInit() override
77 78 79 80 81 82
  {
    SetName("ImageClassifier");
    SetDescription("Performs a classification of the input image according to a model file.");

    // Documentation
    SetDocName("Image Classification");
83
    SetDocLongDescription("This application performs an image classification based on a model file produced by the TrainImagesClassifier application. Pixels of the output image will contain the class labels decided by the classifier (maximal class label = 65535). The input pixels can be optionally centered and reduced according to the statistics file produced by the ComputeImagesStatistics application. An optional input mask can be provided, in which case only input image pixels whose corresponding mask value is greater than 0 will be classified. By default, the remaining of pixels will be given the label 0 in the output image.");
84

85
    SetDocLimitations("The input image must have the same type, order and number of bands than the images used to produce the statistics file and the SVM model file. If a statistics file was used during training by the TrainImagesClassifier, it is mandatory to use the same statistics file for classification. If an input mask is used, its size must match the input image size.");
86 87 88 89 90 91 92 93 94
    SetDocAuthors("OTB-Team");
    SetDocSeeAlso("TrainImagesClassifier, ValidateImagesClassifier, ComputeImagesStatistics");

    AddDocTag(Tags::Learning);

    AddParameter(ParameterType_InputImage, "in",  "Input Image");
    SetParameterDescription( "in", "The input image to classify.");

    AddParameter(ParameterType_InputImage,  "mask",   "Input Mask");
95
    SetParameterDescription( "mask", "The mask allows restricting classification of the input image to the area where mask pixel values are greater than 0.");
96 97 98
    MandatoryOff("mask");

    AddParameter(ParameterType_InputFilename, "model", "Model file");
99
    SetParameterDescription("model", "A model file (produced by TrainImagesClassifier application, maximal class label = 65535).");
100 101 102 103 104

    AddParameter(ParameterType_InputFilename, "imstat", "Statistics file");
    SetParameterDescription("imstat", "A XML file containing mean and standard deviation to center and reduce samples before classification (produced by ComputeImagesStatistics application).");
    MandatoryOff("imstat");

105
    AddParameter(ParameterType_Int, "nodatalabel", "Label mask value");
106 107 108 109 110
    SetParameterDescription("nodatalabel", "By default, "
      "hidden pixels will have the assigned label 0 in the output image. "
      "It's possible to define the label mask by another value, "
      "but be careful to not take a label from another class (max. 65535).");

111 112 113
    SetDefaultParameterInt("nodatalabel", 0);
    MandatoryOff("nodatalabel");

114 115
    AddParameter(ParameterType_OutputImage, "out",  "Output Image");
    SetParameterDescription( "out", "Output image containing class labels");
116
    SetDefaultOutputPixelType( "out", ImagePixelType_uint8);
117

118
    AddParameter(ParameterType_OutputImage, "confmap",  "Confidence map");
119 120 121 122 123 124 125 126 127 128
    SetParameterDescription( "confmap", "Confidence map of the produced classification. The confidence index depends on the model: \n\n"
      "* LibSVM: difference between the two highest probabilities (needs a model with probability estimates, so that classes probabilities can be computed for each sample)\n"
      "* Boost: sum of votes\n"
      "* DecisionTree: (not supported)\n"
      "* GradientBoostedTree: (not supported)\n"
      "* KNearestNeighbors: number of neighbors with the same label\n"
      "* NeuralNetwork: difference between the two highest responses\n"
      "* NormalBayes: (not supported)\n"
      "* RandomForest: Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 majority classes) is not available for now.\n"
      "* SVM: distance to margin (only works for 2-class models)\n");
129
    SetDefaultOutputPixelType( "confmap", ImagePixelType_double);
130 131
    MandatoryOff("confmap");

132 133 134 135 136 137 138
    AddRAMParameter();

   // Doc example parameter settings
    SetDocExampleParameterValue("in", "QB_1_ortho.tif");
    SetDocExampleParameterValue("imstat", "EstimateImageStatisticsQB1.xml");
    SetDocExampleParameterValue("model", "clsvmModelQB1.svm");
    SetDocExampleParameterValue("out", "clLabeledImageQB1.tif");
139

140
    SetOfficialDocLink();
141 142
  }

143
  void DoUpdateParameters() override
144 145 146 147
  {
    // Nothing to do here : all parameters are independent
  }

148
  void DoExecute() override
149 150 151 152 153 154 155 156 157
  {
    // Load input image
    FloatVectorImageType::Pointer inImage = GetParameterImage("in");
    inImage->UpdateOutputInformation();

    // Load svm model
    otbAppLogINFO("Loading model");
    m_Model = MachineLearningModelFactoryType::CreateMachineLearningModel(GetParameterString("model"),
                                                                          MachineLearningModelFactoryType::ReadMode);
158 159 160 161 162 163

    if (m_Model.IsNull())
      {
      otbAppLogFATAL(<< "Error when loading model " << GetParameterString("model") << " : unsupported model type");
      }

164 165 166 167 168 169 170 171 172 173 174 175 176
    m_Model->Load(GetParameterString("model"));
    otbAppLogINFO("Model loaded");

    // Normalize input image (optional)
    StatisticsReader::Pointer  statisticsReader = StatisticsReader::New();
    MeasurementType  meanMeasurementVector;
    MeasurementType  stddevMeasurementVector;
    m_Rescaler = RescalerType::New();

    // Classify
    m_ClassificationFilter = ClassificationFilterType::New();
    m_ClassificationFilter->SetModel(m_Model);

177 178
    m_ClassificationFilter->SetDefaultLabel(GetParameterInt("nodatalabel"));

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    // Normalize input image if asked
    if(IsParameterEnabled("imstat")  )
      {
      otbAppLogINFO("Input image normalization activated.");
      // Load input image statistics
      statisticsReader->SetFileName(GetParameterString("imstat"));
      meanMeasurementVector   = statisticsReader->GetStatisticVectorByName("mean");
      stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
      otbAppLogINFO( "mean used: " << meanMeasurementVector );
      otbAppLogINFO( "standard deviation used: " << stddevMeasurementVector );
      // Rescale vector image
      m_Rescaler->SetScale(stddevMeasurementVector);
      m_Rescaler->SetShift(meanMeasurementVector);
      m_Rescaler->SetInput(inImage);

      m_ClassificationFilter->SetInput(m_Rescaler->GetOutput());
      }
    else
      {
      otbAppLogINFO("Input image normalization deactivated.");
      m_ClassificationFilter->SetInput(inImage);
      }


    if(IsParameterEnabled("mask"))
      {
      otbAppLogINFO("Using input mask");
      // Load mask image and cast into LabeledImageType
207
      MaskImageType::Pointer inMask = GetParameterUInt8Image("mask");
208 209 210 211

      m_ClassificationFilter->SetInputMask(inMask);
      }

212
    SetParameterOutputImage<OutputImageType>("out", m_ClassificationFilter->GetOutput());
213 214 215 216

    // output confidence map
    if (IsParameterEnabled("confmap") && HasValue("confmap"))
      {
217
      m_ClassificationFilter->SetUseConfidenceMap(true);
218 219 220 221
      if (m_Model->HasConfidenceIndex())
        {
        SetParameterOutputImage<ConfidenceImageType>("confmap",m_ClassificationFilter->GetOutputConfidence());
        }
222 223 224 225 226
      else
        {
        otbAppLogWARNING("Confidence map requested but the classifier doesn't support it!");
        this->DisableParameter("confmap");
        }
227
      }
228 229 230 231 232 233 234 235 236 237 238 239
  }

  ClassificationFilterType::Pointer m_ClassificationFilter;
  ModelPointerType m_Model;
  RescalerType::Pointer m_Rescaler;
};


}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::ImageClassifier)