From ad83dd5aa0d32451abbf1cdcbe1412c31ce2d1d9 Mon Sep 17 00:00:00 2001 From: Jordi Inglada <jordi.inglada@orfeo-toolbox.org> Date: Mon, 3 Jul 2006 12:41:10 +0000 Subject: [PATCH] Corrections namespace pour doxygen --- Examples/BasicFilters/LeeImageFilter.cxx | 12 ++--- .../ChangeDetectionFrameworkExample.cxx | 10 ++-- Examples/ChangeDetection/CorrelChDet.cxx | 6 +-- Examples/ChangeDetection/DiffChDet.cxx | 8 +-- Examples/ChangeDetection/RatioChDet.cxx | 6 +-- .../BayesianPluginClassifier.cxx | 16 +++--- ...ationMaximizationMixtureModelEstimator.cxx | 10 ++-- .../KdTreeBasedKMeansClustering.cxx | 24 ++++----- .../ScalarImageKmeansClassifier.cxx | 10 ++-- .../ScalarImageKmeansModelEstimator.cxx | 2 +- .../ScalarImageMarkovRandomField1.cxx | 18 +++---- .../Containers/TreeContainer.cxx | 20 +++---- Examples/DataRepresentation/Image/Image1.cxx | 8 +-- Examples/DataRepresentation/Image/Image2.cxx | 6 +-- Examples/DataRepresentation/Image/Image3.cxx | 2 +- Examples/DataRepresentation/Image/Image4.cxx | 8 +-- Examples/DataRepresentation/Image/Image5.cxx | 6 +-- .../DataRepresentation/Image/RGBImage.cxx | 8 +-- .../DataRepresentation/Image/VectorImage.cxx | 10 ++-- Examples/DataRepresentation/Mesh/Mesh1.cxx | 6 +-- Examples/DataRepresentation/Mesh/Mesh2.cxx | 10 ++-- Examples/DataRepresentation/Mesh/Mesh3.cxx | 4 +- .../DataRepresentation/Mesh/PointSet2.cxx | 10 ++-- .../DataRepresentation/Mesh/PointSet3.cxx | 6 +-- .../Mesh/PointSetWithVectors.cxx | 10 ++-- .../Path/PolyLineParametricPath1.cxx | 2 +- .../FeatureExtraction/AlignmentsExample.cxx | 16 +++--- ...AssymmetricFusionOfLineDetectorExample.cxx | 10 ++-- .../ComplexMomentImageExample.cxx | 4 +- .../ComplexMomentPathExample.cxx | 8 +-- .../CorrelationLineDetectorExample.cxx | 12 ++--- .../ExtractSegmentsByStepsExample.cxx | 12 ++--- .../ExtractSegmentsExample.cxx | 8 +-- .../FlusserMomentImageExample.cxx | 6 +-- Examples/FeatureExtraction/HarrisExample.cxx | 20 +++---- .../HuMomentImageExample.cxx | 6 +-- .../FeatureExtraction/LocalHoughExample.cxx | 12 ++--- .../RatioLineDetectorExample.cxx | 12 ++--- .../TouziEdgeDetectorExample.cxx | 6 +-- .../Filtering/BinaryThresholdImageFilter.cxx | 10 ++-- .../CannyEdgeDetectionImageFilter.cxx | 6 +-- Examples/Filtering/ThresholdImageFilter.cxx | 10 ++-- Examples/IO/ExtractROI.cxx | 24 ++++----- Examples/IO/ImageReadCastWrite.cxx | 2 +- .../IO/ImageReadRegionOfInterestWrite.cxx | 12 ++--- Examples/IO/ImageReadWrite.cxx | 10 ++-- Examples/IO/MetadataExample.cxx | 6 +-- Examples/IO/MultibandImageReadWrite.cxx | 8 +-- Examples/IO/RGBImageReadWrite.cxx | 4 +- Examples/IO/StreamingImageReadWrite.cxx | 10 ++-- Examples/Installation/HelloWorld.cxx | 4 +- .../SVMImageClassificationExample.cxx | 12 ++--- ...ageEstimatorClassificationMultiExample.cxx | 6 +-- .../SVMImageModelEstimatorExample.cxx | 4 +- .../SVMPointSetClassificationExample.cxx | 10 ++-- .../SVMPointSetModelEstimatorExample.cxx | 4 +- .../FuzzyConnectednessImageFilter.cxx | 6 +-- .../HybridSegmentationFuzzyVoronoi.cxx | 53 ++++--------------- Examples/Segmentation/ConfidenceConnected.cxx | 12 ++--- .../ConnectedThresholdImageFilter.cxx | 10 ++-- .../Segmentation/FastMarchingImageFilter.cxx | 32 +++++------ .../IsolatedConnectedImageFilter.cxx | 8 +-- .../NeighborhoodConnectedImageFilter.cxx | 10 ++-- .../OtsuMultipleThresholdImageFilter.cxx | 4 +- .../Segmentation/OtsuThresholdImageFilter.cxx | 10 ++-- .../Segmentation/WatershedSegmentation.cxx | 18 +++---- Examples/Visu/GreyVisuExample.cxx | 4 +- Examples/Visu/VisuExample1.cxx | 4 +- 68 files changed, 326 insertions(+), 357 deletions(-) diff --git a/Examples/BasicFilters/LeeImageFilter.cxx b/Examples/BasicFilters/LeeImageFilter.cxx index 1b213c1103..4a43549434 100644 --- a/Examples/BasicFilters/LeeImageFilter.cxx +++ b/Examples/BasicFilters/LeeImageFilter.cxx @@ -31,7 +31,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::LeeImageFilter}. +// This example illustrates the use of the \doxygen{otb}{LeeImageFilter}. // This filter belongs to the family of the edge-preserving smoothing // filters which are usually used for speckle reduction in radar // images. The Lee filter \cite{LeeFilter} aplies a linear regression @@ -96,7 +96,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. // // Software Guide : EndLatex @@ -107,7 +107,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileWriter} is instantiated in order to write the + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the // output image to a file. // // Software Guide : EndLatex @@ -138,7 +138,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::LeeImageFilter}. + // \doxygen{otb}{LeeImageFilter}. // // \index{otb::LeeImageFilter!SetInput()} // \index{otb::FileImageReader!GetOutput()} @@ -199,13 +199,13 @@ int main( int argc, char * argv[] ) // \includegraphics[width=0.44\textwidth]{GomaSmall.eps} // \includegraphics[width=0.44\textwidth]{GomaSmallLeeFiltered.eps} // \itkcaption[Lee Filter Application]{Result of applying the - // \doxygen{otb::LeeImageFilter} to a SAR image.} + // \doxygen{otb}{LeeImageFilter} to a SAR image.} // \label{fig:LEE_FILTER} // \end{figure} // // \relatedClasses // \begin{itemize} - // \item \doxygen{otb::FrostImageFilter} + // \item \doxygen{otb}{FrostImageFilter} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx b/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx index 1b2de12149..a79aa883db 100644 --- a/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx +++ b/Examples/ChangeDetection/ChangeDetectionFrameworkExample.cxx @@ -29,7 +29,7 @@ // This example illustrates the Change Detector framework implemented // in OTB. This framework uses the generic programming approach. All // change detection filters are -// \doxygen{otb::BinaryFunctorNeighborhoodImageFilter}s, that is, they +// \doxygen{otb}{BinaryFunctorNeighborhoodImageFilter}s, that is, they // are filters taking two images as input and providing one image as // output. The change detection computation itself is performed on a // the neighborhood of each pixel of the input images. @@ -62,7 +62,7 @@ // // Since the change detectors operate on neighborhoods, the functor // call will take 2 arguments which are -// \doxygen{itk::ConstNeighborhoodIterator}s. +// \doxygen{itk}{ConstNeighborhoodIterator}s. // // The change detector functor is templated over the types of the // input iterators and the output result type. The core of the change @@ -106,7 +106,7 @@ public: // // The next step is the definition of the change detector filter. As // stated above, this filter will inherit from -// \doxygen{otb::BinaryFunctorNeighborhoodImageFilter} which is +// \doxygen{otb}{BinaryFunctorNeighborhoodImageFilter} which is // templated over the 2 input image types, the output image type and // the functor used to perform the change detection operation. // @@ -157,7 +157,7 @@ private: // // Pay attention to the fact that no \code{.txx} file is needed, since // filtering operation is implemented in the -// \doxygen{otb::BinaryFunctorNeighborhoodImageFilter} class. So all +// \doxygen{otb}{BinaryFunctorNeighborhoodImageFilter} class. So all // the algorithmics part is inside the functor. // // We can now write a program using the change detector. @@ -198,7 +198,7 @@ int main(int argc, char* argv[] ) // Software Guide : BeginLatex // // We declare the readers, the writer, but also the - // \doxygen{itk::RescaleIntensityImageFilter} which will be used to + // \doxygen{itk}{RescaleIntensityImageFilter} which will be used to // rescale the result before writing it to a file. // // SoftwareGuide : EndLatex diff --git a/Examples/ChangeDetection/CorrelChDet.cxx b/Examples/ChangeDetection/CorrelChDet.cxx index d1ae71059e..ccea83417d 100644 --- a/Examples/ChangeDetection/CorrelChDet.cxx +++ b/Examples/ChangeDetection/CorrelChDet.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // This example illustrates the class -// \doxygen{otb::CorrelationChangeDetector} for detecting changes +// \doxygen{otb}{CorrelationChangeDetector} for detecting changes // between pairs of images. This filter computes the correlation coefficient in // the neighborhood of each pixel of the pair of images to be compared. This // example will use the images shown in @@ -88,7 +88,7 @@ int main(int argc, char* argv[] ) // can be vey large, we will force the pipeline to use // streaming. For this purpose, the file writer will be // streamed. This is achieved by using the - // \doxygen{otb::StreamingImageFileWriter} class. + // \doxygen{otb}{StreamingImageFileWriter} class. // // Software Guide : EndLatex @@ -115,7 +115,7 @@ int main(int argc, char* argv[] ) // Software Guide : BeginLatex // - // The \doxygen{otb::CorrelationChangeDetector} is templated over + // The \doxygen{otb}{CorrelationChangeDetector} is templated over // the types of the two input images and the type of the generated change // image. // diff --git a/Examples/ChangeDetection/DiffChDet.cxx b/Examples/ChangeDetection/DiffChDet.cxx index 9de75a40ef..18c191d0fd 100755 --- a/Examples/ChangeDetection/DiffChDet.cxx +++ b/Examples/ChangeDetection/DiffChDet.cxx @@ -35,7 +35,7 @@ // Software Guide : BeginLatex // This example illustrates the class -// \doxygen{otb::MeanDifferenceImageFilter} for detecting changes +// \doxygen{otb}{MeanDifferenceImageFilter} for detecting changes // between pairs of images. This filter computes the mean intensity in // the neighborhood of each pixel of the pair of images to be compared // and uses the difference of means as a change indicator. This @@ -104,7 +104,7 @@ int main(int argc, char* argv[] ) // can be vey large, we will force the pipeline to use // streaming. For this purpose, the file writer will be // streamed. This is achieved by using the - // \doxygen{otb::StreamingImageFileWriter} class. + // \doxygen{otb}{StreamingImageFileWriter} class. // // Software Guide : EndLatex @@ -119,7 +119,7 @@ int main(int argc, char* argv[] ) // The change detector will give positive and negative values // depending on the sign of the difference. We are usually // interested only in the asbolute value of the difference. For - // this purpose, we will use the \doxygen{itk::AbsImageFilter}. Also, before + // this purpose, we will use the \doxygen{itk}{AbsImageFilter}. Also, before // saving the image to a file in, for instance, PNG format, we will // rescale the results of the change detection in order to use all // the output pixel type range of values. @@ -136,7 +136,7 @@ int main(int argc, char* argv[] ) // Software Guide : BeginLatex // - // The \doxygen{otb::MeanDifferenceImageFilter} is templated over + // The \doxygen{otb}{MeanDifferenceImageFilter} is templated over // the types of the two input images and the type of the generated change // image. // diff --git a/Examples/ChangeDetection/RatioChDet.cxx b/Examples/ChangeDetection/RatioChDet.cxx index f079a46f9b..014910d7b0 100644 --- a/Examples/ChangeDetection/RatioChDet.cxx +++ b/Examples/ChangeDetection/RatioChDet.cxx @@ -26,7 +26,7 @@ // Software Guide : BeginLatex // This example illustrates the class -// \doxygen{otb::MeanRatioImageFilter} for detecting changes +// \doxygen{otb}{MeanRatioImageFilter} for detecting changes // between pairs of images. This filter computes the mean intensity in // the neighborhood of each pixel of the pair of images to be compared // and uses the ratio of means as a change indicator. This change @@ -96,7 +96,7 @@ int main(int argc, char* argv[] ) // can be vey large, we will force the pipeline to use // streaming. For this purpose, the file writer will be // streamed. This is achieved by using the - // \doxygen{otb::StreamingImageFileWriter} class. + // \doxygen{otb}{StreamingImageFileWriter} class. // // Software Guide : EndLatex @@ -126,7 +126,7 @@ int main(int argc, char* argv[] ) // Software Guide : BeginLatex // - // The \doxygen{otb::MeanRatioImageFilter} is templated over + // The \doxygen{otb}{MeanRatioImageFilter} is templated over // the types of the two input images and the type of the generated change // image. // diff --git a/Examples/Classification/BayesianPluginClassifier.cxx b/Examples/Classification/BayesianPluginClassifier.cxx index de878d0c3e..dfea1f4286 100644 --- a/Examples/Classification/BayesianPluginClassifier.cxx +++ b/Examples/Classification/BayesianPluginClassifier.cxx @@ -30,12 +30,12 @@ // all the components of the classifier system and the data flow. This system // differs with the previous k-means clustering algorithms in several // ways. The biggest difference is that this classifier uses the -// \subdoxygen{itk::Statistics}{GaussianDensityFunction}s as membership functions -// instead of the \subdoxygen{itk::Statistics}{EuclideanDistance}. Since the +// \subdoxygen{itk}{Statistics}{GaussianDensityFunction}s as membership functions +// instead of the \subdoxygen{itk}{Statistics}{EuclideanDistance}. Since the // membership function is different, the membership function requires a // different set of parameters, mean vectors and covariance matrices. We -// choose the \subdoxygen{itk::Statistics}{MeanCalculator} (sample mean) and the -// \subdoxygen{itk::Statistics}{CovarianceCalculator} (sample covariance) for the +// choose the \subdoxygen{itk}{Statistics}{MeanCalculator} (sample mean) and the +// \subdoxygen{itk}{Statistics}{CovarianceCalculator} (sample covariance) for the // estimation algorithms of the two parameters. If we want more robust // estimation algorithm, we can replace these estimation algorithms with more // alternatives without changing other components in the classifier system. @@ -52,10 +52,10 @@ // \protect\label{fig:BayesianPluginClassifier} // \end{figure} // -// We use the \subdoxygen{itk::Statistics}{ListSample} as the sample (test -// and training). The \doxygen{itk::Vector} is our measurement vector +// We use the \subdoxygen{itk}{Statistics}{ListSample} as the sample (test +// and training). The \doxygen{itk}{Vector} is our measurement vector // class. To store measurement vectors into two separate sample -// containers, we use the \subdoxygen{itk::Statistics}{Subsample} objects. +// containers, we use the \subdoxygen{itk}{Statistics}{Subsample} objects. // // Software Guide : EndLatex @@ -93,7 +93,7 @@ // Software Guide : BeginLatex // // We will fill the sample with random variables from two normal -// distribution using the \subdoxygen{itk::Statistics}{NormalVariateGenerator}. +// distribution using the \subdoxygen{itk}{Statistics}{NormalVariateGenerator}. // // Software Guide : EndLatex diff --git a/Examples/Classification/ExpectationMaximizationMixtureModelEstimator.cxx b/Examples/Classification/ExpectationMaximizationMixtureModelEstimator.cxx index 603d25e769..c7f053d346 100644 --- a/Examples/Classification/ExpectationMaximizationMixtureModelEstimator.cxx +++ b/Examples/Classification/ExpectationMaximizationMixtureModelEstimator.cxx @@ -68,13 +68,13 @@ // distributions belonging to exponential family such as Poisson, // Binomial, Exponential, and Normal distributions have analytical // solutions for updating the parameter set. The -// \subdoxygen{itk::Statistics}{ExpectationMaximizationMixtureModelEstimator} +// \subdoxygen{itk}{Statistics}{ExpectationMaximizationMixtureModelEstimator} // class assumes that such type of components. // -// In the following example we use the \subdoxygen{itk::Statistics}{ListSample} as -// the sample (test and training). The \subdoxygen{itk::Vector} is our measurement +// In the following example we use the \subdoxygen{itk}{Statistics}{ListSample} as +// the sample (test and training). The \subdoxygen{itk}{Vector} is our measurement // vector class. To store measurement vectors into two separate sample -// container, we use the \subdoxygen{itk::Statistics}{Subsample} objects. +// container, we use the \subdoxygen{itk}{Statistics}{Subsample} objects. // // Software Guide : EndLatex @@ -97,7 +97,7 @@ // Software Guide : BeginLatex // // We will fill the sample with random variables from two normal -// distribution using the \subdoxygen{itk::Statistics}{NormalVariateGenerator}. +// distribution using the \subdoxygen{itk}{Statistics}{NormalVariateGenerator}. // // Software Guide : EndLatex diff --git a/Examples/Classification/KdTreeBasedKMeansClustering.cxx b/Examples/Classification/KdTreeBasedKMeansClustering.cxx index f1ded1b216..6da0dffd1e 100644 --- a/Examples/Classification/KdTreeBasedKMeansClustering.cxx +++ b/Examples/Classification/KdTreeBasedKMeansClustering.cxx @@ -42,13 +42,13 @@ // measurement vector that changes its cluster membership from the // previous iteration, then the algorithm stops. // -// The \subdoxygen{itk::Statistics}{KdTreeBasedKmeansEstimator} is a variation of +// The \subdoxygen{itk}{Statistics}{KdTreeBasedKmeansEstimator} is a variation of // this logic. The k-means clustering algorithm is computationally very // expensive because it has to recalculate the mean at each iteration. To // update the mean values, we have to calculate the distance between k means // and each and every measurement vector. To reduce the computational burden, // the KdTreeBasedKmeansEstimator uses a special data structure: the -// k-d tree (\subdoxygen{itk::Statistics}{KdTree}) with additional +// k-d tree (\subdoxygen{itk}{Statistics}{KdTree}) with additional // information. The additional information includes the number and the vector // sum of measurement vectors under each node under the tree architecture. // @@ -61,8 +61,8 @@ // \cite{Kanungo2000}. Our implementation of this scheme follows the // article by the Kanungo et al \cite{Kanungo2000}. // -// We use the \subdoxygen{itk::Statistics}{ListSample} as the input sample, the -// \doxygen{itk::Vector} as the measurement vector. The following code +// We use the \subdoxygen{itk}{Statistics}{ListSample} as the input sample, the +// \doxygen{itk}{Vector} as the measurement vector. The following code // snippet includes their header files. // // Software Guide : EndLatex @@ -74,12 +74,12 @@ // Software Guide : BeginLatex // -// Since this k-means algorithm requires a \subdoxygen{itk::Statistics}{KdTree} +// Since this k-means algorithm requires a \subdoxygen{itk}{Statistics}{KdTree} // object as an input, we include the KdTree class header file. As mentioned // above, we need a k-d tree with the vector sum and the number of // measurement vectors. Therefore we use the -// \subdoxygen{itk::Statistics}{WeightedCentroidKdTreeGenerator} instead of the -// \subdoxygen{itk::Statistics}{KdTreeGenerator} that generate a k-d tree without +// \subdoxygen{itk}{Statistics}{WeightedCentroidKdTreeGenerator} instead of the +// \subdoxygen{itk}{Statistics}{KdTreeGenerator} that generate a k-d tree without // such additional information. // // Software Guide : EndLatex @@ -104,10 +104,10 @@ // Software Guide : BeginLatex // // To generate the clusters, we must create k instances of -// \subdoxygen{itk::Statistics}{EuclideanDistance} function as the membership +// \subdoxygen{itk}{Statistics}{EuclideanDistance} function as the membership // functions for each cluster and plug that---along with a sample---into an -// \subdoxygen{itk::Statistics}{SampleClassifier} object to get a -// \subdoxygen{itk::Statistics}{MembershipSample} that stores pairs of measurement +// \subdoxygen{itk}{Statistics}{SampleClassifier} object to get a +// \subdoxygen{itk}{Statistics}{MembershipSample} that stores pairs of measurement // vectors and their associated class labels (k labels). // // Software Guide : EndLatex @@ -121,7 +121,7 @@ // Software Guide : BeginLatex // // We will fill the sample with random variables from two normal -// distribution using the \subdoxygen{itk::Statistics}{NormalVariateGenerator}. +// distribution using the \subdoxygen{itk}{Statistics}{NormalVariateGenerator}. // // Software Guide : EndLatex @@ -281,7 +281,7 @@ int main() // the estimated k means and the measurement vectors. We use the // EuclideanDistance class as membership functions. Our choice // for the decision rule is the - // \subdoxygen{itk::Statistics}{MinimumDecisionRule} that returns the + // \subdoxygen{itk}{Statistics}{MinimumDecisionRule} that returns the // index of the membership functions that have the smallest value for // a measurement vector. // diff --git a/Examples/Classification/ScalarImageKmeansClassifier.cxx b/Examples/Classification/ScalarImageKmeansClassifier.cxx index 79a1a4d9c0..f5f84e5c90 100755 --- a/Examples/Classification/ScalarImageKmeansClassifier.cxx +++ b/Examples/Classification/ScalarImageKmeansClassifier.cxx @@ -30,7 +30,7 @@ // This example shows how to use the KMeans model for classifying the pixel of // a scalar image. // -// The \subdoxygen{itk::Statistics}{ScalarImageKmeansImageFilter} is used for taking +// The \subdoxygen{itk}{Statistics}{ScalarImageKmeansImageFilter} is used for taking // a scalar image and applying the K-Means algorithm in order to define classes // that represents statistical distributions of intensity values in the pixels. // The classes are then used in this filter for generating a labeled image where @@ -65,7 +65,7 @@ int main( int argc, char * argv [] ) // // First we define the pixel type and dimension of the image that we intend to // classify. With this image type we can also declare the -// \doxygen{otb::ImageFileReader} needed for reading the input image, create one and +// \doxygen{otb}{ImageFileReader} needed for reading the input image, create one and // set its input filename. // // Software Guide : EndLatex @@ -87,7 +87,7 @@ int main( int argc, char * argv [] ) // Software Guide : BeginLatex // // With the \code{ImageType} we instantiate the type of the -// \doxygen{itk::ScalarImageKmeansImageFilter} that will compute the K-Means model +// \doxygen{itk}{ScalarImageKmeansImageFilter} that will compute the K-Means model // and then classify the image pixels. // // Software Guide : EndLatex @@ -166,11 +166,11 @@ int main( int argc, char * argv [] ) // Software Guide : BeginLatex // -// The \doxygen{itk::ScalarImageKmeansImageFilter} is predefined for producing an 8 +// The \doxygen{itk}{ScalarImageKmeansImageFilter} is predefined for producing an 8 // bits scalar image as output. This output image contains labels associated // to each one of the classes in the K-Means algorithm. In the following lines // we use the \code{OutputImageType} in order to instantiate the type of a -// \doxygen{otb::ImageFileWriter}. Then create one, and connect it to the output of +// \doxygen{otb}{ImageFileWriter}. Then create one, and connect it to the output of // the classification filter. // // Software Guide : EndLatex diff --git a/Examples/Classification/ScalarImageKmeansModelEstimator.cxx b/Examples/Classification/ScalarImageKmeansModelEstimator.cxx index f0110bd5a6..456e521da4 100755 --- a/Examples/Classification/ScalarImageKmeansModelEstimator.cxx +++ b/Examples/Classification/ScalarImageKmeansModelEstimator.cxx @@ -26,7 +26,7 @@ // // This example shows how to compute the KMeans model of an Scalar Image. // -// The \subdoxygen{itk::Statistics}{KdTreeBasedKmeansEstimator} is used for taking +// The \subdoxygen{itk}{Statistics}{KdTreeBasedKmeansEstimator} is used for taking // a scalar image and applying the K-Means algorithm in order to define classes // that represents statistical distributions of intensity values in the pixels. // One of the drawbacks of this technique is that the spatial diff --git a/Examples/Classification/ScalarImageMarkovRandomField1.cxx b/Examples/Classification/ScalarImageMarkovRandomField1.cxx index ad246c39ae..62e65e72b3 100755 --- a/Examples/Classification/ScalarImageMarkovRandomField1.cxx +++ b/Examples/Classification/ScalarImageMarkovRandomField1.cxx @@ -31,7 +31,7 @@ // This example shows how to use the Markov Random Field approach for // classifying the pixel of a scalar image. // -// The \subdoxygen{itk::Statistics}{MRFImageFilter} is used for refining an initial +// The \subdoxygen{itk}{Statistics}{MRFImageFilter} is used for refining an initial // classification by introducing the spatial coherence of the labels. The user // should provide two images as input. The first image is the one to be // classified while the second image is an image of labels representing an @@ -110,7 +110,7 @@ int main( int argc, char * argv [] ) // // First we define the pixel type and dimension of the image that we intend to // classify. With this image type we can also declare the -// \doxygen{otb::ImageFileReader} needed for reading the input image, create one and +// \doxygen{otb}{ImageFileReader} needed for reading the input image, create one and // set its input filename. // // Software Guide : EndLatex @@ -155,7 +155,7 @@ int main( int argc, char * argv [] ) // whose pixels have multiple components, that is, images of vector type, we // must adapt our scalar image in order to satisfy the interface expected by // the \code{MRFImageFilter}. We do this by using the -// \doxygen{itk::ScalarToArrayCastImageFilter}. With this filter we will present our +// \doxygen{itk}{ScalarToArrayCastImageFilter}. With this filter we will present our // scalar image as a vector image whose vector pixels contain a single // component. // @@ -179,7 +179,7 @@ int main( int argc, char * argv [] ) // // With the input image type \code{ImageType} and labeled image type // \code{LabelImageType} we instantiate the type of the -// \doxygen{itk::MRFImageFilter} that will apply the Markov Random Field algorithm +// \doxygen{itk}{MRFImageFilter} that will apply the Markov Random Field algorithm // in order to refine the pixel classification. // // Software Guide : EndLatex @@ -234,7 +234,7 @@ int main( int argc, char * argv [] ) // Given that the MRF filter needs to continually relabel the pixels, it needs // access to a set of membership functions that will measure to what degree // every pixel belongs to a particular class. The classification is performed -// by the \doxygen{itk::ImageClassifierBase} class, that is instantiated using the +// by the \doxygen{itk}{ImageClassifierBase} class, that is instantiated using the // type of the input vector image and the type of the labeled image. // // Software Guide : EndLatex @@ -273,7 +273,7 @@ int main( int argc, char * argv [] ) // Software Guide : BeginLatex // // We now instantiate the membership functions. In this case we use the -// \subdoxygen{itk::Statistics}{DistanceToCentroidMembershipFunction} class +// \subdoxygen{itk}{Statistics}{DistanceToCentroidMembershipFunction} class // templated over the pixel type of the vector image, which in our example // happens to be a vector of dimension 1. // @@ -369,7 +369,7 @@ int main( int argc, char * argv [] ) // functions have comparable value. This is necessary since the label // image and the input image can have different dynamic ranges. The fidelity // function is usually computed using a distance function, such as the -// \doxygen{itk::DistanceToCentroidMembershipFunction} or one of the other +// \doxygen{itk}{DistanceToCentroidMembershipFunction} or one of the other // membership functions. They tend to have values in the order of the means // specified. // Software Guide : EndLatex @@ -408,10 +408,10 @@ int main( int argc, char * argv [] ) // Software Guide : BeginLatex // -// The output image produced by the \doxygen{itk::MRFImageFilter} has the same pixel +// The output image produced by the \doxygen{itk}{MRFImageFilter} has the same pixel // type as the labeled input image. In the following lines we use the // \code{OutputImageType} in order to instantiate the type of a -// \doxygen{otb::ImageFileWriter}. Then create one, and connect it to the output of +// \doxygen{otb}{ImageFileWriter}. Then create one, and connect it to the output of // the classification filter after passing it through an intensity rescaler // to rescale it to an 8 bit dynamic range // diff --git a/Examples/DataRepresentation/Containers/TreeContainer.cxx b/Examples/DataRepresentation/Containers/TreeContainer.cxx index 1302e0b838..ca5091395e 100644 --- a/Examples/DataRepresentation/Containers/TreeContainer.cxx +++ b/Examples/DataRepresentation/Containers/TreeContainer.cxx @@ -27,9 +27,9 @@ // // \index{itk::TreeContainer} // -// This example shows how to use the \doxygen{TreeContainer} and the +// This example shows how to use the \doxygen{itk}{TreeContainer} and the // associated TreeIterators. -// The \doxygen{TreeContainer} implements the notion of tree and is +// The \doxygen{itk}{TreeContainer} implements the notion of tree and is // templated over the type of node so it can virtually handle any // objects. Each node is supposed to have only one parent so no cycle // is present in the tree. No checking is done to ensure a cycle-free @@ -86,7 +86,7 @@ int main(int, char* []) tree->Add(7,1); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// We define an \doxygen{LevelOrderTreeIterator} to parse the tree in level order. +// We define an \doxygen{itk}{LevelOrderTreeIterator} to parse the tree in level order. // This particular iterator takes three arguments. The first one is the actual tree // to be parsed, the second one is the maximum depth level and the third one is the // starting node. The \code{GetNode()} function return a node given its value. Once @@ -118,7 +118,7 @@ int main(int, char* []) levelIt.CountChildren(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// The \doxygen{ChildTreeIterator} provides another way to iterate through a tree +// The \doxygen{itk}{ChildTreeIterator} provides another way to iterate through a tree // by listing all the children of a node. // Software Guide : EndLatex std::cout << "ChildTreeIterator:" << std::endl; @@ -156,7 +156,7 @@ int main(int, char* []) delete childItClone; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// The \doxygen{LeafTreeIterator} iterates through the leaves of the tree. +// The \doxygen{itk}{LeafTreeIterator} iterates through the leaves of the tree. // Software Guide : EndLatex std::cout << "LeafTreeIterator:" << std::endl; // Software Guide : BeginCodeSnippet @@ -170,7 +170,7 @@ int main(int, char* []) std::cout << std::endl; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// The \doxygen{InOrderTreeIterator} iterates through the tree +// The \doxygen{itk}{InOrderTreeIterator} iterates through the tree // in the order from left to right. // Software Guide : EndLatex std::cout << "InOrderTreeIterator:" << std::endl; @@ -185,7 +185,7 @@ int main(int, char* []) std::cout << std::endl; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// The \doxygen{PreOrderTreeIterator} iterates through the tree +// The \doxygen{itk}{PreOrderTreeIterator} iterates through the tree // from left to right but do a depth first search. // Software Guide : EndLatex std::cout << "PreOrderTreeIterator:" << std::endl; @@ -200,7 +200,7 @@ int main(int, char* []) std::cout << std::endl; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// The \doxygen{PostOrderTreeIterator} iterates through the tree +// The \doxygen{itk}{PostOrderTreeIterator} iterates through the tree // from left to right but goes from the leaves to the root in the search. // Software Guide : EndLatex std::cout << "PostOrderTreeIterator:" << std::endl; @@ -215,7 +215,7 @@ int main(int, char* []) std::cout << std::endl; // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// The \doxygen{RootTreeIterator} goes from one node to the +// The \doxygen{itk}{RootTreeIterator} goes from one node to the // root. The second arguments is the starting node. Here we go from the leaf // node (value = 6) up to the root. // Software Guide : EndLatex @@ -253,7 +253,7 @@ int main(int, char* []) PreOrderIt2.Add(5); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex -// The \doxygen{TreeIteratorClone} can be used to have a generic copy of +// The \doxygen{itk}{TreeIteratorClone} can be used to have a generic copy of // an iterator. // Software Guide : EndLatex // Software Guide : BeginCodeSnippet diff --git a/Examples/DataRepresentation/Image/Image1.cxx b/Examples/DataRepresentation/Image/Image1.cxx index 5d3307313d..884c6b9b56 100644 --- a/Examples/DataRepresentation/Image/Image1.cxx +++ b/Examples/DataRepresentation/Image/Image1.cxx @@ -24,7 +24,7 @@ // Software Guide : BeginLatex // -// This example illustrates how to manually construct an \doxygen{otb::Image} +// This example illustrates how to manually construct an \doxygen{otb}{Image} // class. The following is the minimal code needed to instantiate, declare // and create the image class. // @@ -63,7 +63,7 @@ int main(int, char *[]) // // The image can then be created by invoking the \code{New()} operator // from the corresponding image type and assigning the result - // to a \doxygen{itk::SmartPointer}. + // to a \doxygen{itk}{SmartPointer}. // // \index{Image!Pointer} // \index{Image!New()} @@ -92,8 +92,8 @@ int main(int, char *[]) // instantiated as previously shown, and that regions describing the image are // then associated with it. // - // A region is defined by two classes: the \doxygen{itk::Index} and - // \doxygen{itk::Size} classes. The origin of the region within the + // A region is defined by two classes: the \doxygen{itk}{Index} and + // \doxygen{itk}{Size} classes. The origin of the region within the // image with which it is associated is defined by Index. The // extent, or size, of the region is defined by Size. Index // is represented by a n-dimensional array where each component is an diff --git a/Examples/DataRepresentation/Image/Image2.cxx b/Examples/DataRepresentation/Image/Image2.cxx index a9f95e68e9..a7d6544650 100644 --- a/Examples/DataRepresentation/Image/Image2.cxx +++ b/Examples/DataRepresentation/Image/Image2.cxx @@ -27,7 +27,7 @@ // Software Guide : BeginLatex // // The first thing required to read an image from a file is to include -// the header file of the \doxygen{otb::ImageFileReader} class. +// the header file of the \doxygen{otb}{ImageFileReader} class. // // Software Guide : EndLatex @@ -78,7 +78,7 @@ int main( int , char * argv[]) // Software Guide : BeginLatex // // The reader type can now be used to create one reader object. A - // \doxygen{itk::SmartPointer} (defined by the \code{::Pointer} + // \doxygen{itk}{SmartPointer} (defined by the \code{::Pointer} // notation) is used to receive the reference to the newly created // reader. The \code{New()} // method is invoked to create an instance of the image reader. @@ -99,7 +99,7 @@ int main( int , char * argv[]) // of the image to be loaded in memory. This is provided through // the \code{SetFileName()} method. The file format here is inferred // from the filename extension. The user may also explicitly specify the - // data format explicitly using the \doxygen{itk::ImageIO} (See + // data format explicitly using the \doxygen{itk}{ImageIO} (See // Chapter~\ref{sec:ImagReadWrite} \pageref{sec:ImagReadWrite} for more // information): // diff --git a/Examples/DataRepresentation/Image/Image3.cxx b/Examples/DataRepresentation/Image/Image3.cxx index e375cd1c16..afdb73fa55 100644 --- a/Examples/DataRepresentation/Image/Image3.cxx +++ b/Examples/DataRepresentation/Image/Image3.cxx @@ -76,7 +76,7 @@ int main(int, char *[]) // unique index. An index is an array of integers that defines the position // of the pixel along each coordinate dimension of the image. The IndexType // is automatically defined by the image and can be accessed using the - // scope operator like \doxygen{itk::Index}. The length of the array will match + // scope operator like \doxygen{itk}{Index}. The length of the array will match // the dimensions of the associated image. // // The following code illustrates the declaration of an index variable and diff --git a/Examples/DataRepresentation/Image/Image4.cxx b/Examples/DataRepresentation/Image/Image4.cxx index fbdb8e031b..615b3769fe 100644 --- a/Examples/DataRepresentation/Image/Image4.cxx +++ b/Examples/DataRepresentation/Image/Image4.cxx @@ -48,7 +48,7 @@ // \end{figure} // // Figure \ref{fig:ImageOriginAndSpacing} illustrates the main geometrical -// concepts associated with the \doxygen{otb::Image}. In this figure, +// concepts associated with the \doxygen{otb}{Image}. In this figure, // circles are // used to represent the center of pixels. The value of the pixel is assumed // to exist as a Dirac Delta Function located at the pixel center. Pixel @@ -203,7 +203,7 @@ int main(int, char *[]) // space can be mapped into an image index for the purpose of reading the // content of the closest pixel. // - // First, a \doxygen{itk::Point} type must be declared. The point type is + // First, a \doxygen{itk}{Point} type must be declared. The point type is // templated over the type used to represent coordinates and over the // dimension of the space. In this particular case, the dimension of the // point must match the dimension of the image. @@ -217,10 +217,10 @@ int main(int, char *[]) // Software Guide : BeginLatex // - // The Point class, like an \doxygen{itk::Index}, is a relatively small and + // The Point class, like an \doxygen{itk}{Index}, is a relatively small and // simple object. For this reason, it is not reference-counted like the // large data objects in OTB. Consequently, it is also not manipulated - // with \doxygen{itk::SmartPointer}s. Point objects are simply declared as + // with \doxygen{itk}{SmartPointer}s. Point objects are simply declared as // instances of any other C++ class. Once the point is declared, its // components can be accessed using traditional array notation. In // particular, the \code{[]} operator is available. For efficiency reasons, diff --git a/Examples/DataRepresentation/Image/Image5.cxx b/Examples/DataRepresentation/Image/Image5.cxx index d35dfe875e..6ec76af561 100644 --- a/Examples/DataRepresentation/Image/Image5.cxx +++ b/Examples/DataRepresentation/Image/Image5.cxx @@ -24,11 +24,11 @@ // Software Guide : BeginLatex // -// This example illustrates how to import data into the \doxygen{otb::Image} +// This example illustrates how to import data into the \doxygen{otb}{Image} // class. This is particularly useful for interfacing with other software // systems. Many systems use a contiguous block of memory as a buffer // for image pixel data. The current example assumes this is the case and -// feeds the buffer into an \doxygen{ImportImageFilter}, thereby producing an +// feeds the buffer into an \doxygen{itk}{ImportImageFilter}, thereby producing an // Image as output. // @@ -191,7 +191,7 @@ int main(int argc, char * argv[]) // programming languages. Note that ITK // does not use \code{for()} loops in its internal code to access // pixels. All pixel access tasks are instead performed using - // \doxygen{itk::ImageIterator}s that support the management of + // \doxygen{itk}{ImageIterator}s that support the management of // n-dimensional images. // // Software Guide : EndLatex diff --git a/Examples/DataRepresentation/Image/RGBImage.cxx b/Examples/DataRepresentation/Image/RGBImage.cxx index 2998036783..74ba4e38cb 100644 --- a/Examples/DataRepresentation/Image/RGBImage.cxx +++ b/Examples/DataRepresentation/Image/RGBImage.cxx @@ -35,7 +35,7 @@ // // A class intended to support the RGB pixel type is available in ITK. You // could also define your own pixel class and use it to instantiate a -// custom image type. In order to use the \doxygen{itk::RGBPixel} class, it is +// custom image type. In order to use the \doxygen{itk}{RGBPixel} class, it is // necessary to include its header file. // // \index{itk::RGBPixel} @@ -80,7 +80,7 @@ int main( int , char * argv[] ) // Software Guide : BeginLatex // // The image type can be used to instantiate other filter, for example, - // an \doxygen{otb::ImageFileReader} object that will read the image from a + // an \doxygen{otb}{ImageFileReader} object that will read the image from a // file. // // \index{otb::ImageFileReader!RGB Image} @@ -138,8 +138,8 @@ int main( int , char * argv[] ) // Software Guide : BeginLatex // - // The subindex notation can also be used since the \doxygen{itk::RGBPixel} inherits the - // \code{[]} operator from the \doxygen{itk::FixedArray} class. + // The subindex notation can also be used since the \doxygen{itk}{RGBPixel} inherits the + // \code{[]} operator from the \doxygen{itk}{FixedArray} class. // // Software Guide : EndLatex diff --git a/Examples/DataRepresentation/Image/VectorImage.cxx b/Examples/DataRepresentation/Image/VectorImage.cxx index 0d45ffe525..c773837a3f 100644 --- a/Examples/DataRepresentation/Image/VectorImage.cxx +++ b/Examples/DataRepresentation/Image/VectorImage.cxx @@ -28,23 +28,23 @@ // typical example is a multispectral image. The following code illustrates // how to instantiate and use an image whose pixels are of vector type. // -// We could use the \doxygen{itk::Vector} class to define the pixel +// We could use the \doxygen{itk}{Vector} class to define the pixel // type. The Vector class is intended to represent a geometrical vector in // space. It is not intended to be used as an array container like the // \href{http://www.sgi.com/tech/stl/Vector.html}{\code{std::vector}} in // \href{http://www.sgi.com/tech/stl/}{STL}. If you are interested in -// containers, the \doxygen{VectorContainer} class may provide the +// containers, the \doxygen{itk}{VectorContainer} class may provide the // functionality you want. // // \index{itk::Vector} // \index{itk::Vector!header} // -// However, the \doxygen{itk::Vector} is a fixed size array and it +// However, the \doxygen{itk}{Vector} is a fixed size array and it // assumes that the number of channels of the image is known at // compile time. Therefore, we prefer to use the -// \doxygen{otb::VectorImage} class which allows to choose the number +// \doxygen{otb}{VectorImage} class which allows to choose the number // of channels of the image at runtime. The pixels will be of type -// \doxygen{itk::VariableLengthVector}. +// \doxygen{itk}{VariableLengthVector}. // // The first step is to include the header file of the Vector class. // diff --git a/Examples/DataRepresentation/Mesh/Mesh1.cxx b/Examples/DataRepresentation/Mesh/Mesh1.cxx index 776cb23472..7d2b971015 100644 --- a/Examples/DataRepresentation/Mesh/Mesh1.cxx +++ b/Examples/DataRepresentation/Mesh/Mesh1.cxx @@ -24,8 +24,8 @@ // Software Guide : BeginLatex // -// The \doxygen{itk::Mesh} class is intended to represent shapes in space. It -// derives from the \doxygen{itk::PointSet} class and hence inherits all the +// The \doxygen{itk}{Mesh} class is intended to represent shapes in space. It +// derives from the \doxygen{itk}{PointSet} class and hence inherits all the // functionality related to points and access to the pixel-data associated // with the points. The mesh class is also n-dimensional which // allows a great flexibility in its use. @@ -101,7 +101,7 @@ int main(int, char *[]) // are reference counted objects and are managed using SmartPointers. The // following line illustrates how a mesh is created by invoking the // \code{New()} method of the MeshType and the resulting object is assigned - // to a \doxygen{SmartPointer}. + // to a \doxygen{itk}{SmartPointer}. // // \index{itk::Mesh!New()} // \index{itk::Mesh!Pointer()} diff --git a/Examples/DataRepresentation/Mesh/Mesh2.cxx b/Examples/DataRepresentation/Mesh/Mesh2.cxx index 1af6f963ae..2d78c5c972 100644 --- a/Examples/DataRepresentation/Mesh/Mesh2.cxx +++ b/Examples/DataRepresentation/Mesh/Mesh2.cxx @@ -24,10 +24,10 @@ // Software Guide : BeginLatex // -// A \doxygen{itk::Mesh} can contain a variety of cell types. Typical cells are -// the \doxygen{itk::LineCell}, \doxygen{itk::TriangleCell}, -// \doxygen{itk::QuadrilateralCell} and -// \doxygen{itk::TetrahedronCell}. The latter will not be used very +// A \doxygen{itk}{Mesh} can contain a variety of cell types. Typical cells are +// the \doxygen{itk}{LineCell}, \doxygen{itk}{TriangleCell}, +// \doxygen{itk}{QuadrilateralCell} and +// \doxygen{itk}{TetrahedronCell}. The latter will not be used very // often in the remote sensing context. Additional // flexibility is provided for managing cells at the price of a bit more of // complexity than in the case of point management. @@ -109,7 +109,7 @@ int main(int, char *[]) // since it is now necessary to establish a protocol to make clear who is // responsible for allocating and releasing the cells' memory. This protocol // is implemented in the form of a specific type of pointer called the - // \code{CellAutoPointer}. This pointer, based on the \doxygen{itk::AutoPointer}, + // \code{CellAutoPointer}. This pointer, based on the \doxygen{itk}{AutoPointer}, // differs in many respects from the SmartPointer. The CellAutoPointer has an // internal pointer to the actual object and a boolean flag that indicates // if the CellAutoPointer is responsible for releasing the cell memory diff --git a/Examples/DataRepresentation/Mesh/Mesh3.cxx b/Examples/DataRepresentation/Mesh/Mesh3.cxx index 685f6092a7..665c890485 100644 --- a/Examples/DataRepresentation/Mesh/Mesh3.cxx +++ b/Examples/DataRepresentation/Mesh/Mesh3.cxx @@ -70,7 +70,7 @@ int main(int, char *[]) // Software Guide : BeginLatex // - // The \doxygen{itk::LineCell} type can now be instantiated using the traits + // The \doxygen{itk}{LineCell} type can now be instantiated using the traits // taken from the Mesh. // // \index{itk::LineCell!Instantiation} @@ -145,7 +145,7 @@ int main(int, char *[]) // Software Guide : BeginLatex // - // Data associated with cells is inserted in the \doxygen{itk::Mesh} by using + // Data associated with cells is inserted in the \doxygen{itk}{Mesh} by using // the \code{SetCellData()} method. It requires the user to provide an // identifier and the value to be inserted. The identifier should match one // of the inserted cells. In this simple example, the square of the cell diff --git a/Examples/DataRepresentation/Mesh/PointSet2.cxx b/Examples/DataRepresentation/Mesh/PointSet2.cxx index 1cbfb2d442..8cf0fa2b0a 100644 --- a/Examples/DataRepresentation/Mesh/PointSet2.cxx +++ b/Examples/DataRepresentation/Mesh/PointSet2.cxx @@ -24,8 +24,8 @@ // Software Guide : BeginLatex // -// The \doxygen{PointSet} class uses an internal container to manage the storage of -// \doxygen{Point}s. It is more efficient, in general, to manage points by using the +// The \doxygen{itk}{PointSet} class uses an internal container to manage the storage of +// \doxygen{itk}{Point}s. It is more efficient, in general, to manage points by using the // access methods provided directly on the points container. The following // example illustrates how to interact with the point container and how to use // point iterators. @@ -57,8 +57,8 @@ int main(int, char *[]) // // The actual type of the PointsContainer depends on what style of // PointSet is being used. The dynamic PointSet use the - // \doxygen{itk::MapContainer} while the static PointSet uses the - // \doxygen{itk::VectorContainer}. The vector and map containers are basically + // \doxygen{itk}{MapContainer} while the static PointSet uses the + // \doxygen{itk}{VectorContainer}. The vector and map containers are basically // ITK wrappers around the \href{http://www.sgi.com/tech/stl/}{STL} // classes \href{http://www.sgi.com/tech/stl/Map.html}{\code{std::map}} // and \href{http://www.sgi.com/tech/stl/Vector.html}{\code{std::vector}}. @@ -67,7 +67,7 @@ int main(int, char *[]) // and vector container are templated over the type of the elements they // contain. In this case they are templated over PointType. // Containers are reference counted object. They are then created with the - // \code{New()} method and assigned to a \doxygen{SmartPointer} after + // \code{New()} method and assigned to a \doxygen{itk}{SmartPointer} after // creation. The following line creates a point container compatible with // the type of the PointSet from which the trait has been taken. // diff --git a/Examples/DataRepresentation/Mesh/PointSet3.cxx b/Examples/DataRepresentation/Mesh/PointSet3.cxx index 88d9f8eb70..733bb08dc2 100644 --- a/Examples/DataRepresentation/Mesh/PointSet3.cxx +++ b/Examples/DataRepresentation/Mesh/PointSet3.cxx @@ -24,7 +24,7 @@ // Software Guide : BeginLatex // -// The \doxygen{itk::PointSet} class was designed to interact with the Image class. +// The \doxygen{itk}{PointSet} class was designed to interact with the Image class. // For this reason it was found convenient to allow the points in the set to // hold values that could be computed from images. The value associated with // the point is referred as \code{PixelType} in order to make it consistent @@ -114,8 +114,8 @@ int main(int, char *[]) // Data associated with points is internally stored in // \code{PointDataContainer}s. In the same way as with points, the actual // container type used depend on whether the style of the PointSet is static - // or dynamic. Static point sets will use an \doxygen{itk::VectorContainer} while - // dynamic point sets will use an \doxygen{itk::MapContainer}. The type of the + // or dynamic. Static point sets will use an \doxygen{itk}{VectorContainer} while + // dynamic point sets will use an \doxygen{itk}{MapContainer}. The type of the // data container is defined as one of the traits in the PointSet. The // following declaration illustrates how the type can be taken from the // traits and used to conveniently declare a similar type on the global diff --git a/Examples/DataRepresentation/Mesh/PointSetWithVectors.cxx b/Examples/DataRepresentation/Mesh/PointSetWithVectors.cxx index ee711dd3bd..080c0e915d 100644 --- a/Examples/DataRepresentation/Mesh/PointSetWithVectors.cxx +++ b/Examples/DataRepresentation/Mesh/PointSetWithVectors.cxx @@ -29,7 +29,7 @@ // points for producing geometric representations or storing // multi-band informations. The following code shows // how vector values can be used as pixel type on the PointSet class. The -// \doxygen{itk::Vector} class is used here as the pixel type. This class is +// \doxygen{itk}{Vector} class is used here as the pixel type. This class is // appropriate for representing the relative position between two points. It // could then be used to manage displacements in disparity map // estimations, for example. @@ -163,8 +163,8 @@ int main(int, char *[]) // Software Guide : BeginLatex // - // The \doxygen{itk::Vector} class has overloaded the \code{+} operator with - // the \doxygen{itk::Point}. In other words, vectors can be added to points in + // The \doxygen{itk}{Vector} class has overloaded the \code{+} operator with + // the \doxygen{itk}{Point}. In other words, vectors can be added to points in // order to produce new points. This property is exploited in the center // of the loop in order to update the points positions with a single // statement. @@ -188,11 +188,11 @@ int main(int, char *[]) // Software Guide : BeginLatex // - // Note that \doxygen{itk::Vector} is not the appropriate class for + // Note that \doxygen{itk}{Vector} is not the appropriate class for // representing normals to surfaces and gradients of functions. This is due // to the way in which vectors behave under affine transforms. ITK has a // specific class for representing normals and function gradients. This is - // the \doxygen{itk::CovariantVector} class. + // the \doxygen{itk}{CovariantVector} class. // // Software Guide : EndLatex diff --git a/Examples/DataRepresentation/Path/PolyLineParametricPath1.cxx b/Examples/DataRepresentation/Path/PolyLineParametricPath1.cxx index 38a1dce101..86f4f4a82a 100644 --- a/Examples/DataRepresentation/Path/PolyLineParametricPath1.cxx +++ b/Examples/DataRepresentation/Path/PolyLineParametricPath1.cxx @@ -24,7 +24,7 @@ // Software Guide : BeginLatex // -// This example illustrates how to use the \doxygen{PolyLineParametricPath}. +// This example illustrates how to use the \doxygen{itk}{PolyLineParametricPath}. // This class will typically be used for representing in a concise way the // output of an image segmentation algorithm in 2D. See section // \ref{sec:Alignments} for an example in the context of alignment diff --git a/Examples/FeatureExtraction/AlignmentsExample.cxx b/Examples/FeatureExtraction/AlignmentsExample.cxx index 1ed1ca110e..a85045a4fe 100644 --- a/Examples/FeatureExtraction/AlignmentsExample.cxx +++ b/Examples/FeatureExtraction/AlignmentsExample.cxx @@ -31,7 +31,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{ImageToPathListAlignFilter}. +// This example illustrates the use of the \doxygen{otb}{ImageToPathListAlignFilter}. // This filter allows to extract meaninful alignments. Alignments // (that is edges and lines) are detected using the {\em Gestalt} // approach proposed by Desolneux et al. \cite{desolneux}. In this @@ -55,7 +55,7 @@ // Software Guide : BeginLatex // In order to visualize the detected alignments, we will use the -// facility class \doxygen{DrawPathFilter} which draws a +// facility class \doxygen{otb}{DrawPathFilter} which draws a // \code{itk::PolyLineParametricPath} on top of a given image. // Software Guide : EndLatex @@ -108,7 +108,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{ImageToPathListAlignFilter} is templated over the + // The \doxygen{otb}{ImageToPathListAlignFilter} is templated over the // input image type and the output path type, so we start by // defining: // @@ -148,7 +148,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // - // As stated, above, the \doxygen{DrawPathFilter}, is useful for + // As stated, above, the \doxygen{otb}{DrawPathFilter}, is useful for // drawint the detected alignments. This class is templated over // the input image and path types and also on the output image // type. @@ -163,7 +163,7 @@ int main( int argc, char ** argv ) // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // We will now go through the list of detected paths and feed them - // to the \doxygen{DrawPathFilter} inside a loop. We will use a list + // to the \doxygen{otb}{DrawPathFilter} inside a loop. We will use a list // iterator inside a \code{while} statement. // Software Guide : BeginCodeSnippet @@ -179,7 +179,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // // We define a dummy image will be iteratively fed to the - // \doxygen{DrawPathFilter} after the drawing of each alignment. + // \doxygen{otb}{DrawPathFilter} after the drawing of each alignment. // // Software Guide : EndLatex @@ -222,7 +222,7 @@ int main( int argc, char ** argv ) // \includegraphics[width=0.35\textwidth]{QB_Suburb.eps} // \includegraphics[width=0.35\textwidth]{QB_SuburbAlign.eps} // \itkcaption[Lee Filter Application]{Result of applying the - // \doxygen{ImageToPathListAlignFilter} to a VHR image of a suburb.} + // \doxygen{otb}{ImageToPathListAlignFilter} to a VHR image of a suburb.} // \label{fig:Align} // \end{figure} // @@ -230,7 +230,7 @@ int main( int argc, char ** argv ) // \relatedClasses // \begin{itemize} - // \item \doxygen{FrostImageFilter} + // \item \doxygen{otb}{FrostImageFilter} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx b/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx index 6fe53c8a52..cb173be2f1 100644 --- a/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx +++ b/Examples/FeatureExtraction/AssymmetricFusionOfLineDetectorExample.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::AssymmetricFusionOfLineDetectorImageFilter}. +// This example illustrates the use of the \doxygen{otb}{AssymmetricFusionOfLineDetectorImageFilter}. // // The first step required to use this filter is to include its header file. // @@ -95,7 +95,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. // // Software Guide : EndLatex @@ -106,7 +106,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileWriter} is instantiated in order to write the + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the // output image to a file. // // Software Guide : EndLatex @@ -175,7 +175,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::AssymetricFusionOfDetectorImageFilter}. The pipeline is built as follows. + // \doxygen{otb}{AssymetricFusionOfDetectorImageFilter}. The pipeline is built as follows. // // \index{otb::AssymetricFusionOfDetectorImageFilter!SetInput()} // @@ -233,7 +233,7 @@ int main( int argc, char * argv[] ) // \includegraphics[width=0.25\textwidth]{amst.eps} // \includegraphics[width=0.25\textwidth]{amstLineFusion.eps} // \itkcaption[Line Correlation Detector Application]{Result of applying - // the \doxygen{otb::AssymetricFusionOfDetectorImageFilter} to a SAR + // the \doxygen{otb}{AssymetricFusionOfDetectorImageFilter} to a SAR // image. From left to right : original image, line intensity.} \label{fig:LINEFUSION_FILTER} \end{figure} // // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/ComplexMomentImageExample.cxx b/Examples/FeatureExtraction/ComplexMomentImageExample.cxx index f05b628c37..55d52ddd33 100644 --- a/Examples/FeatureExtraction/ComplexMomentImageExample.cxx +++ b/Examples/FeatureExtraction/ComplexMomentImageExample.cxx @@ -33,7 +33,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::ComplexMomentImageFunction}. +// This example illustrates the use of the \doxygen{otb}{ComplexMomentImageFunction}. // // The first step required to use this filter is to include its header file. // @@ -70,7 +70,7 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{otb::ComplexMomentImageFunction} is templated over the + // The \doxygen{otb}{ComplexMomentImageFunction} is templated over the // input image type and the output complex type value, so we start by // defining: // diff --git a/Examples/FeatureExtraction/ComplexMomentPathExample.cxx b/Examples/FeatureExtraction/ComplexMomentPathExample.cxx index ee6cce05aa..eaf5c22848 100644 --- a/Examples/FeatureExtraction/ComplexMomentPathExample.cxx +++ b/Examples/FeatureExtraction/ComplexMomentPathExample.cxx @@ -35,8 +35,8 @@ // The complex moments can be computed on images, but sometimes we are // interested in computing them on shapes extracted from images by // segmentation algorithms. These shapes can be represented by -// \doxygen{itk::Path}s. This example illustrates the use of the -// \doxygen{otb::ComplexMomentPathFunction} for the computation of +// \doxygen{itk}{Path}s. This example illustrates the use of the +// \doxygen{otb}{ComplexMomentPathFunction} for the computation of // complex geometric moments on ITK paths. // // The first step required to use this filter is to include its header file. @@ -66,7 +66,7 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{otb::ComplexMomentPathFunction} is templated over the + // The \doxygen{otb}{ComplexMomentPathFunction} is templated over the // input path type and the output complex type value, so we start by // defining: // @@ -133,7 +133,7 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // Since the paths are defined in physical coordinates, we do not // need to set the center for the moment computation as we did - // with the \doxygen{otb::ComplexMomentImageFunction}. The same + // with the \doxygen{otb}{ComplexMomentImageFunction}. The same // applies for the size of the neighborhood around the // center pixel for the moment computation. The moment computation // is triggered by calling the \code{Evaluate} method. diff --git a/Examples/FeatureExtraction/CorrelationLineDetectorExample.cxx b/Examples/FeatureExtraction/CorrelationLineDetectorExample.cxx index 956f4abbe8..7b7bdd9c0a 100644 --- a/Examples/FeatureExtraction/CorrelationLineDetectorExample.cxx +++ b/Examples/FeatureExtraction/CorrelationLineDetectorExample.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::CorrelationLineDetectorImageFilter}. +// This example illustrates the use of the \doxygen{otb}{CorrelationLineDetectorImageFilter}. // This filter is used for line detection in SAR images. Its principle // is described in \cite{tup-98}: a line is detected if two parallel // edges are present in the images. These edges are detected with the @@ -99,7 +99,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. // // Software Guide : EndLatex @@ -110,7 +110,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileWriter} is instantiated in order to write the + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the // output image to a file. // // Software Guide : EndLatex @@ -179,7 +179,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::LineCorrelationDetectorImageFilter}. The pipeline is built as follows. + // \doxygen{otb}{LineCorrelationDetectorImageFilter}. The pipeline is built as follows. // // \index{otb::LineCorrelationDetectorImageFilter!SetInput()} // @@ -248,13 +248,13 @@ int main( int argc, char * argv[] ) // \includegraphics[width=0.25\textwidth]{amstLineCorrelations.eps} // \includegraphics[width=0.25\textwidth]{amstLineCorrelationDirections.eps} // \itkcaption[Line Correlation Detector Application]{Result of applying - // the \doxygen{otb::LineCorrelationDetectorImageFilter} to a SAR + // the \doxygen{otb}{LineCorrelationDetectorImageFilter} to a SAR // image. From left to right : original image, line intensity and // edge orientation.} \label{fig:LINECORRELATION_FILTER} \end{figure} // // \relatedClasses // \begin{itemize} - // \item \doxygen{otb::LineCorrelationDetectorImageFilter} + // \item \doxygen{otb}{LineCorrelationDetectorImageFilter} // \end{itemize} // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/ExtractSegmentsByStepsExample.cxx b/Examples/FeatureExtraction/ExtractSegmentsByStepsExample.cxx index a420413457..92e2c07a1b 100644 --- a/Examples/FeatureExtraction/ExtractSegmentsByStepsExample.cxx +++ b/Examples/FeatureExtraction/ExtractSegmentsByStepsExample.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::ExtractSegmentsImageFilter}. +// This example illustrates the use of the \doxygen{otb}{ExtractSegmentsImageFilter}. // // The first step required to use this filter is to include its header file. // @@ -119,7 +119,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. // // Software Guide : EndLatex @@ -130,7 +130,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileWriter} is instantiated in order to write the + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the // output image to a file. // // Software Guide : EndLatex @@ -180,7 +180,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::ExtractSegmentsImageFilter}. The pipeline is built as follows. + // \doxygen{otb}{ExtractSegmentsImageFilter}. The pipeline is built as follows. // // \index{otb::ExtractSegmentsImageFilter!SetInput()} // @@ -282,13 +282,13 @@ int main( int argc, char * argv[] ) // \includegraphics[width=0.25\textwidth]{amst.eps} // \includegraphics[width=0.25\textwidth]{amstSegmentExtractionBySteps.eps} // \itkcaption[Line Correlation Detector Application]{Result of applying - // the \doxygen{otb::AssymetricFusionOfDetectorImageFilter} to a SAR + // the \doxygen{otb}{AssymetricFusionOfDetectorImageFilter} to a SAR // image. From left to right : original image, line intensity and // edge orientation.} \label{fig:LINECORRELATION_FILTER} \end{figure} // // \relatedClasses // \begin{itemize} - // \item \doxygen{otb::AssymetricFusionOfDetectorImageFilter} + // \item \doxygen{otb}{AssymetricFusionOfDetectorImageFilter} // \end{itemize} // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/ExtractSegmentsExample.cxx b/Examples/FeatureExtraction/ExtractSegmentsExample.cxx index 3bfadc8b43..0ade3bbcd5 100644 --- a/Examples/FeatureExtraction/ExtractSegmentsExample.cxx +++ b/Examples/FeatureExtraction/ExtractSegmentsExample.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::ExtractSegmentsImageFilter}. +// This example illustrates the use of the \doxygen{otb}{ExtractSegmentsImageFilter}. // // The first step required to use this filter is to include its header file. // @@ -186,7 +186,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::ExtractSegmentsImageFilter}. The pipeline is built as follows. + // \doxygen{otb}{ExtractSegmentsImageFilter}. The pipeline is built as follows. // // \index{otb::ExtractSegmentsImageFilter!SetInput()} // @@ -278,13 +278,13 @@ int main( int argc, char * argv[] ) // \includegraphics[width=0.25\textwidth]{amst.eps} // \includegraphics[width=0.25\textwidth]{amstSegmentExtraction.eps} // \itkcaption[Line Correlation Detector Application]{Result of applying - // the \doxygen{otb::AssymetricFusionOfDetectorImageFilter} to a SAR + // the \doxygen{otb}{AssymetricFusionOfDetectorImageFilter} to a SAR // image. From left to right : original image, line intensity and // edge orientation.} \label{fig:LINECORRELATION_FILTER} \end{figure} // // \relatedClasses // \begin{itemize} - // \item \doxygen{otb::AssymetricFusionOfDetectorImageFilter} + // \item \doxygen{otb}{AssymetricFusionOfDetectorImageFilter} // \end{itemize} // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/FlusserMomentImageExample.cxx b/Examples/FeatureExtraction/FlusserMomentImageExample.cxx index da9d35ad98..79f415c409 100644 --- a/Examples/FeatureExtraction/FlusserMomentImageExample.cxx +++ b/Examples/FeatureExtraction/FlusserMomentImageExample.cxx @@ -33,7 +33,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::FlusserMomentImageFunction}. +// This example illustrates the use of the \doxygen{otb}{FlusserMomentImageFunction}. // // The first step required to use this filter is to include its header file. // @@ -70,7 +70,7 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{otb::FlusserImageFunction} is templated over the + // The \doxygen{otb}{FlusserImageFunction} is templated over the // input image type and the output (real) type value, so we start by // defining: // @@ -160,7 +160,7 @@ int main(int argc, char ** argv ) // // \relatedClasses // \begin{itemize} - // \item \doxygen{otb::FlusserPathFunction} + // \item \doxygen{otb}{FlusserPathFunction} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/HarrisExample.cxx b/Examples/FeatureExtraction/HarrisExample.cxx index cdac1ce1ec..d9ad71147b 100644 --- a/Examples/FeatureExtraction/HarrisExample.cxx +++ b/Examples/FeatureExtraction/HarrisExample.cxx @@ -34,7 +34,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{HarrisImageFilter}. +// This example illustrates the use of the \doxygen{otb}{HarrisImageFilter}. // // The first step required to use this filter is to include its header file. // @@ -73,7 +73,7 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{HarrisImageFilter} is templated over the + // The \doxygen{otb}{HarrisImageFilter} is templated over the // input and output image types, so we start by // defining: // @@ -102,7 +102,7 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{HarrisImageFilter} needs some parameters to + // The \doxygen{otb}{HarrisImageFilter} needs some parameters to // operate. The derivative computation is performed by a // convolution with the derivative of a Gaussian kernel of // variance $\sigma_D$ (derivation scale) and @@ -139,18 +139,18 @@ int main(int argc, char ** argv ) // \includegraphics[width=0.25\textwidth]{ROISpot5.eps} // \includegraphics[width=0.25\textwidth]{ROISpot5Harris.eps} // \itkcaption[Lee Filter Application]{Result of applying the - // \doxygen{otb::HarrisImageFilter} to a Spot 5 image.} + // \doxygen{otb}{HarrisImageFilter} to a Spot 5 image.} // \label{fig:Harris} // \end{figure} // - // The output of the \doxygen{otb::HarrisImageFilter} is an image + // The output of the \doxygen{otb}{HarrisImageFilter} is an image // where,for each pixel, we obtain the intensity of the // detection. Often, the user may want to get access to the set of // points for which the output of the detector is higher than a // given threshold. This can be obtained by using the - // \doxygen{otb::HarrisImageToPointSetFilter}. This filter is only + // \doxygen{otb}{HarrisImageToPointSetFilter}. This filter is only // templated over the input image type, the output being a - // \doxygen{itk::PointSet} with pixel type equal to the image pixel type. + // \doxygen{itk}{PointSet} with pixel type equal to the image pixel type. // // Software Guide : EndLatex @@ -172,8 +172,8 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{otb::HarrisImageToPointSetFilter} takes the same - // parameters as the \doxygen{otb::HarrisImageFilter} and an + // The \doxygen{otb}{HarrisImageToPointSetFilter} takes the same + // parameters as the \doxygen{otb}{HarrisImageFilter} and an // additional parameter : the threshold for the point selection. // // Software Guide : EndLatex @@ -197,7 +197,7 @@ int main(int argc, char ** argv ) // the coordinates of the points. We start by accessing the // container of the points which is encapsulated into the point // set (see section \ref{sec:PointSetSection} for more - // information on using \doxygen{itk::PointSet}s) and declaring + // information on using \doxygen{itk}{PointSet}s) and declaring // an iterator to it. // // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/HuMomentImageExample.cxx b/Examples/FeatureExtraction/HuMomentImageExample.cxx index 071f10d777..8629793022 100644 --- a/Examples/FeatureExtraction/HuMomentImageExample.cxx +++ b/Examples/FeatureExtraction/HuMomentImageExample.cxx @@ -33,7 +33,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::HuMomentImageFunction}. +// This example illustrates the use of the \doxygen{otb}{HuMomentImageFunction}. // // The first step required to use this filter is to include its header file. // @@ -70,7 +70,7 @@ int main(int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{otb::HuImageFunction} is templated over the + // The \doxygen{otb}{HuImageFunction} is templated over the // input image type and the output (real) type value, so we start by // defining: // @@ -160,7 +160,7 @@ int main(int argc, char ** argv ) // // \relatedClasses // \begin{itemize} - // \item \doxygen{otb::HuPathFunction} + // \item \doxygen{otb}{HuPathFunction} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/LocalHoughExample.cxx b/Examples/FeatureExtraction/LocalHoughExample.cxx index e2d2225792..852a5e0578 100644 --- a/Examples/FeatureExtraction/LocalHoughExample.cxx +++ b/Examples/FeatureExtraction/LocalHoughExample.cxx @@ -24,7 +24,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::ExtractSegmentsImageFilter}. +// This example illustrates the use of the \doxygen{otb}{ExtractSegmentsImageFilter}. // // The first step required to use this filter is to include its header file. // @@ -106,7 +106,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. // // Software Guide : EndLatex @@ -117,7 +117,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileWriter} is instantiated in order to write the + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the // output image to a file. // // Software Guide : EndLatex @@ -185,7 +185,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::ExtractSegmentsImageFilter}. The pipeline is built as follows. + // \doxygen{otb}{ExtractSegmentsImageFilter}. The pipeline is built as follows. // // \index{otb::ExtractSegmentsImageFilter!SetInput()} // @@ -209,12 +209,12 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // Figure~\ref{fig:LOCAL_HOUGH} - // shows the result of applying the \doxygen{otb::LocalHoughImageFilter}. + // shows the result of applying the \doxygen{otb}{LocalHoughImageFilter}. // \begin{figure} \center // \includegraphics[width=0.25\textwidth]{detected_lines.eps} // \includegraphics[width=0.25\textwidth]{detected_local_hough.eps} // \itkcaption[Line Correlation Detector Application]{Result of applying - // the \doxygen{otb::LocalHoughImageFilter}. From left to right : + // the \doxygen{otb}{LocalHoughImageFilter}. From left to right : // original image, extracted segments.} \label{fig:LOCAL_HOUGH} \end{figure} // // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/RatioLineDetectorExample.cxx b/Examples/FeatureExtraction/RatioLineDetectorExample.cxx index 2f9136194b..54a3f859b0 100644 --- a/Examples/FeatureExtraction/RatioLineDetectorExample.cxx +++ b/Examples/FeatureExtraction/RatioLineDetectorExample.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::RatioLineDetectorImageFilter}. +// This example illustrates the use of the \doxygen{otb}{RatioLineDetectorImageFilter}. // This filter is used for line detection in SAR images. Its principle // is described in \cite{tup-98}: a line is detected if two parallel // edges are present in the images. These edges are detected with the @@ -99,7 +99,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. // // Software Guide : EndLatex @@ -110,7 +110,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{ImageFileWriter} is instantiated in order to write the + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the // output image to a file. // // Software Guide : EndLatex @@ -179,7 +179,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::LineRatioDetectorImageFilter}. The pipeline is built as follows. + // \doxygen{otb}{LineRatioDetectorImageFilter}. The pipeline is built as follows. // // \index{otb::LineRatioDetectorImageFilter!SetInput()} // @@ -248,13 +248,13 @@ int main( int argc, char * argv[] ) // \includegraphics[width=0.25\textwidth]{amstLineRatios.eps} // \includegraphics[width=0.25\textwidth]{amstLineRatioDirections.eps} // \itkcaption[Line Ratio Detector Application]{Result of applying - // the \doxygen{otb::LineRatioDetectorImageFilter} to a SAR + // the \doxygen{otb}{LineRatioDetectorImageFilter} to a SAR // image. From left to right : original image, line intensity and // edge orientation.} \label{fig:LINERATIO_FILTER} \end{figure} // // \relatedClasses // \begin{itemize} - // \item \doxygen{otb::LineCorrelationDetectorImageFilter} + // \item \doxygen{otb}{LineCorrelationDetectorImageFilter} // \end{itemize} // Software Guide : EndLatex diff --git a/Examples/FeatureExtraction/TouziEdgeDetectorExample.cxx b/Examples/FeatureExtraction/TouziEdgeDetectorExample.cxx index 96379bdac0..2b538ebf8e 100644 --- a/Examples/FeatureExtraction/TouziEdgeDetectorExample.cxx +++ b/Examples/FeatureExtraction/TouziEdgeDetectorExample.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // -// This example illustrates the use of the \doxygen{otb::TouziEdgeDetectorImageFilter}. +// This example illustrates the use of the \doxygen{otb}{TouziEdgeDetectorImageFilter}. // This filter belongs to the family of the fixed false alarm rate // edge detectors but it is apropriate for SAR images, where the // speckle noise is considered as multiplicative. By analogy with the @@ -189,7 +189,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{otb::TouziEdgeDetectorImageFilter}. The pipeline is built as follows. + // \doxygen{otb}{TouziEdgeDetectorImageFilter}. The pipeline is built as follows. // // \index{otb::TouziEdgeDetectorImageFilter!SetInput()} // @@ -263,7 +263,7 @@ int main( int argc, char * argv[] ) // \includegraphics[width=0.25\textwidth]{amstTouziEdges.eps} // \includegraphics[width=0.25\textwidth]{amstTouziDirections.eps} // \itkcaption[Touzi Edge Detector Application]{Result of applying the - // \doxygen{otb::TouziEdgeDetectorImageFilter} to a SAR image. From left to right : + // \doxygen{otb}{TouziEdgeDetectorImageFilter} to a SAR image. From left to right : // original image, edge intensity and edge orientation.} // \label{fig:TOUZI_FILTER} // \end{figure} diff --git a/Examples/Filtering/BinaryThresholdImageFilter.cxx b/Examples/Filtering/BinaryThresholdImageFilter.cxx index 0a1ac6cc29..6900d0a758 100644 --- a/Examples/Filtering/BinaryThresholdImageFilter.cxx +++ b/Examples/Filtering/BinaryThresholdImageFilter.cxx @@ -55,7 +55,7 @@ // \index{itk::Binary\-Threshold\-Image\-Filter!Instantiation} // \index{itk::Binary\-Threshold\-Image\-Filter!Header} // -// The first step required to use the \doxygen{itk::BinaryThresholdImageFilter} is +// The first step required to use the \doxygen{itk}{BinaryThresholdImageFilter} is // to include its header file. // // Software Guide : EndLatex @@ -120,7 +120,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. (See Section \ref{sec:IO} on page // \pageref{sec:IO} for more information about reading // and writing data.) @@ -134,7 +134,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileWriter} is instantiated in order to write the output + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the output // image to a file. // // Software Guide : EndLatex @@ -148,7 +148,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // Both the filter and the reader are created by invoking their \code{New()} - // methods and assigning the result to \doxygen{SmartPointer}s. + // methods and assigning the result to \doxygen{itk}{SmartPointer}s. // // Software Guide : EndLatex @@ -253,7 +253,7 @@ int main( int argc, char * argv[] ) // // \relatedClasses // \begin{itemize} - // \item \doxygen{itk::ThresholdImageFilter} + // \item \doxygen{itk}{ThresholdImageFilter} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/Filtering/CannyEdgeDetectionImageFilter.cxx b/Examples/Filtering/CannyEdgeDetectionImageFilter.cxx index 89fea6ed9e..8801a623c5 100755 --- a/Examples/Filtering/CannyEdgeDetectionImageFilter.cxx +++ b/Examples/Filtering/CannyEdgeDetectionImageFilter.cxx @@ -36,7 +36,7 @@ // Software Guide : BeginLatex // // This example introduces the use of the -// \doxygen{itk::CannyEdgeDetectionImageFilter}. This filter is widely used for +// \doxygen{itk}{CannyEdgeDetectionImageFilter}. This filter is widely used for // edge detection since it is the optimal solution satisfying the constraints // of good sensitivity, localization and noise robustness. // @@ -101,7 +101,7 @@ int main(int argc, char* argv[]) // // This filter operates on image of pixel type float. It is then necessary // to cast the type of the input images that are usually of integer type. - // The \doxygen{itk::CastImageFilter} is used here for that purpose. Its image + // The \doxygen{itk}{CastImageFilter} is used here for that purpose. Its image // template parameters are defined for casting from the input type to the // float type using for processing. // @@ -118,7 +118,7 @@ int main(int argc, char* argv[]) // Software Guide : BeginLatex // - // The \doxygen{itk::CannyEdgeDetectionImageFilter} is instantiated using the float image type. + // The \doxygen{itk}{CannyEdgeDetectionImageFilter} is instantiated using the float image type. // // \index{itk::CannyEdgeDetectionImageFilter|textbf} // diff --git a/Examples/Filtering/ThresholdImageFilter.cxx b/Examples/Filtering/ThresholdImageFilter.cxx index 0ee6df27f8..ac3a04a267 100644 --- a/Examples/Filtering/ThresholdImageFilter.cxx +++ b/Examples/Filtering/ThresholdImageFilter.cxx @@ -62,7 +62,7 @@ // \label{fig:ThresholdTransferFunctionOutside} // \end{figure} // -// This example illustrates the use of the \doxygen{itk::ThresholdImageFilter}. +// This example illustrates the use of the \doxygen{itk}{ThresholdImageFilter}. // This filter can be used to transform the intensity levels of an image in // three different ways. // @@ -160,7 +160,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. // // Software Guide : EndLatex @@ -171,7 +171,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileWriter} is instantiated in order to write the + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the // output image to a file. // // Software Guide : EndLatex @@ -202,7 +202,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // The image obtained with the reader is passed as input to the - // \doxygen{itk::ThresholdImageFilter}. + // \doxygen{itk}{ThresholdImageFilter}. // // \index{itk::ThresholdImageFilter!SetInput()} // \index{itk::FileImageReader!GetOutput()} @@ -310,7 +310,7 @@ int main( int argc, char * argv[] ) // // \relatedClasses // \begin{itemize} - // \item \doxygen{itk::BinaryThresholdImageFilter} + // \item \doxygen{itk}{BinaryThresholdImageFilter} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/IO/ExtractROI.cxx b/Examples/IO/ExtractROI.cxx index c1fe33455d..4ceed23b3f 100755 --- a/Examples/IO/ExtractROI.cxx +++ b/Examples/IO/ExtractROI.cxx @@ -36,12 +36,12 @@ // Software Guide : BeginLatex // // This example shows the use of the -// \doxygen{otb::MultiChannelExtractROI} and -// \doxygen{otb::MultiToMonoChannelExtractROI} which allow the +// \doxygen{otb}{MultiChannelExtractROI} and +// \doxygen{otb}{MultiToMonoChannelExtractROI} which allow the // extraction of ROIs from multiband images stored into -// \doxygen{otb::VectorImage}s. The first one povides a Vector Image +// \doxygen{otb}{VectorImage}s. The first one povides a Vector Image // as output, while the second one provides a classical -// \doxygen{otb::Image} with a scalar pixel type. The present example +// \doxygen{otb}{Image} with a scalar pixel type. The present example // shows how to extract a ROI from a 4-band SPOT 5 image and to // produce a first multi-band 3-channel image and a second // mono-channel one for the SWIR band. @@ -109,10 +109,10 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // First of all, we extract the multiband part by using the - // \doxygen{otb::MultiChannelExtractROI} class, which is templated + // \doxygen{otb}{MultiChannelExtractROI} class, which is templated // over the input and output pixel types. This class in not // templated over the images types in order to force these images - // to be of \doxygen{otb::VectorImage} type. + // to be of \doxygen{otb}{VectorImage} type. // // Software Guide : EndLatex @@ -205,18 +205,18 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // The usage of the \doxygen{otb::MultiToMonoChannelExtractROI} is - // similar to the one of the \doxygen{otb::MultiChannelExtractROI} + // The usage of the \doxygen{otb}{MultiToMonoChannelExtractROI} is + // similar to the one of the \doxygen{otb}{MultiChannelExtractROI} // described above. // // The goal now is to extract an ROI from a multi-band image and // generate a mono-channel image as output. // - // We could use the \doxygen{otb::MultiChannelExtractROI} and + // We could use the \doxygen{otb}{MultiChannelExtractROI} and // select a single channel, but using the - // \doxygen{otb::MultiToMonoChannelExtractROI} we generate a - // \doxygen{otb::Image} instead of an - // \doxygen{otb::VectorImage}. This is useful from a computing and + // \doxygen{otb}{MultiToMonoChannelExtractROI} we generate a + // \doxygen{otb}{Image} instead of an + // \doxygen{otb}{VectorImage}. This is useful from a computing and // memory usage point of view. // This class is also templated over the pixel types. // diff --git a/Examples/IO/ImageReadCastWrite.cxx b/Examples/IO/ImageReadCastWrite.cxx index 734ad65a60..4ffa064b8d 100644 --- a/Examples/IO/ImageReadCastWrite.cxx +++ b/Examples/IO/ImageReadCastWrite.cxx @@ -35,7 +35,7 @@ // reading an image of one pixel type and writing it on a different pixel // type. This process not only involves casting but also rescaling the image // intensity since the dynamic range of the input and output pixel types can -// be quite different. The \doxygen{itk::RescaleIntensityImageFilter} is used +// be quite different. The \doxygen{itk}{RescaleIntensityImageFilter} is used // here to linearly rescale the image values. // // The first step in this example is to include the appropriate headers. diff --git a/Examples/IO/ImageReadRegionOfInterestWrite.cxx b/Examples/IO/ImageReadRegionOfInterestWrite.cxx index c8da2bb89c..d2a1923d76 100644 --- a/Examples/IO/ImageReadRegionOfInterestWrite.cxx +++ b/Examples/IO/ImageReadRegionOfInterestWrite.cxx @@ -47,7 +47,7 @@ // Software Guide : BeginLatex // -// The \doxygen{otb::ExtractROI} is the filter used to extract a +// The \doxygen{otb}{ExtractROI} is the filter used to extract a // region from an image. Its header is included below. // // \index{otb::ExtractROI!header} @@ -90,7 +90,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // - // The types for the \doxygen{otb::ImageFileReader} and \doxygen{otb::ImageFileWriter} + // The types for the \doxygen{otb}{ImageFileReader} and \doxygen{otb}{ImageFileWriter} // are instantiated using the image types. // // Software Guide : EndLatex @@ -106,11 +106,11 @@ int main( int argc, char ** argv ) // The ExtractROI type is instantiated using // the input and output pixel types. Using the pixel types as // template parameters instead of the image types allows to - // restrict the use of this class to \doxygen{otb::Image}s which + // restrict the use of this class to \doxygen{otb}{Image}s which // are used with scalar pixel types. See section // \ref{sec:ExtractROI} for the extraction of ROIs on - // \doxygen{otb::VectorImage}s. A filter object is created with the - // New() method and assigned to a \doxygen{SmartPointer}. + // \doxygen{otb}{VectorImage}s. A filter object is created with the + // New() method and assigned to a \doxygen{itk}{SmartPointer}. // // Software Guide : EndLatex @@ -128,7 +128,7 @@ int main( int argc, char ** argv ) // defined by the user. This is done by defining a rectangle with // the following methods (the filter assumes that a 2D image is // being processed, for N-D region extraction, you can use the - // \doxygen{itk::RegionOfInterestImageFilter} class). + // \doxygen{itk}{RegionOfInterestImageFilter} class). // // Software Guide : EndLatex diff --git a/Examples/IO/ImageReadWrite.cxx b/Examples/IO/ImageReadWrite.cxx index 11d088a71d..edcff9a4d0 100644 --- a/Examples/IO/ImageReadWrite.cxx +++ b/Examples/IO/ImageReadWrite.cxx @@ -34,12 +34,12 @@ // Generally speaking they are referred to as filters, although readers have // no pipeline input and writers have no pipeline output. // -// The reading of images is managed by the class \doxygen{otb::ImageFileReader} -// while writing is performed by the class \doxygen{otb::ImageFileWriter}. These +// The reading of images is managed by the class \doxygen{otb}{ImageFileReader} +// while writing is performed by the class \doxygen{otb}{ImageFileWriter}. These // two classes are independent of any particular file format. The actual low // level task of reading and writing specific file formats is done behind // the scenes by a family of classes of type -// \doxygen{itk::ImageIO}. Actually, the OTB image Readers and +// \doxygen{itk}{ImageIO}. Actually, the OTB image Readers and // Writers are very similar to those of ITK, but provide new // functionnalities which are specific to remote sensing images. // @@ -129,7 +129,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // // Then, we create one object of each type using the New() method and - // assigning the result to a \doxygen{SmartPointer}. + // assigning the result to a \doxygen{itk}{SmartPointer}. // // \index{otb::ImageFileReader!New()} // \index{otb::ImageFileWriter!New()} @@ -225,7 +225,7 @@ int main( int argc, char ** argv ) // extension, but the architecture supports arbitrarily complex processes // to determine whether a file can be read or written. Alternatively, the // user can specify the data file format by explicit instantiation and - // assignment the appropriate \doxygen{itk::ImageIO} subclass. + // assignment the appropriate \doxygen{itk}{ImageIO} subclass. // // // Software Guide : EndLatex diff --git a/Examples/IO/MetadataExample.cxx b/Examples/IO/MetadataExample.cxx index 2014515029..2eb4d1d7f2 100755 --- a/Examples/IO/MetadataExample.cxx +++ b/Examples/IO/MetadataExample.cxx @@ -32,9 +32,9 @@ // CEOS and GeoTiff. // // The metadata support is embedded in OTB's IO functionnalities and -// is accessible through the \doxygen{otb::Image} and -// \doxygen{otb::VectorImage} classes. You should avoid using the -// \doxygen{itk::Image} class if you want to have metadata support. +// is accessible through the \doxygen{otb}{Image} and +// \doxygen{otb}{VectorImage} classes. You should avoid using the +// \doxygen{itk}{Image} class if you want to have metadata support. // // SoftwareGuide: EndLatex diff --git a/Examples/IO/MultibandImageReadWrite.cxx b/Examples/IO/MultibandImageReadWrite.cxx index 7b18273fb9..f3b21d8416 100644 --- a/Examples/IO/MultibandImageReadWrite.cxx +++ b/Examples/IO/MultibandImageReadWrite.cxx @@ -25,17 +25,17 @@ // Software Guide : BeginLatex // -// The \doxygen{otb::Image} class with a vector pixel type could be +// The \doxygen{otb}{Image} class with a vector pixel type could be // used for representing multispectral images, with one band per // vector component, however, this is not a practical way, since the // dimensionality of the vector must be known at compile time. OTB -// offers the \doxygen{otb::VectorImage} where the dimensionality of +// offers the \doxygen{otb}{VectorImage} where the dimensionality of // the vector stored for each pixel can be chosen at runtime. This is // needed for the image file readers in order to dynamically set the // number of bands of an image read from a file. // // The OTB Readers and Writers are able to deal with -// \doxygen{otb::VectorImage}s transparently for the user. +// \doxygen{otb}{VectorImage}s transparently for the user. // // The first step for performing reading and writing is to include the // following headers. @@ -106,7 +106,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // // Then, we create one object of each type using the New() method and - // assigning the result to a \doxygen{SmartPointer}. + // assigning the result to a \doxygen{itk}{SmartPointer}. // // \index{otb::ImageFileReader!New()} // \index{otb::ImageFileWriter!New()} diff --git a/Examples/IO/RGBImageReadWrite.cxx b/Examples/IO/RGBImageReadWrite.cxx index 3021dc6132..d401b147bf 100644 --- a/Examples/IO/RGBImageReadWrite.cxx +++ b/Examples/IO/RGBImageReadWrite.cxx @@ -60,7 +60,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // - // The \doxygen{itk::RGBPixel} class is templated over the type used to + // The \doxygen{itk}{RGBPixel} class is templated over the type used to // represent each one of the red, green and blue components. A typical // instantiation of the RGB image class might be as follows. // @@ -130,7 +130,7 @@ int main( int argc, char ** argv ) // You may have noticed that apart from the declaration of the // \code{PixelType} there is nothing in this code that is specific for RGB // images. All the actions required to support color images are implemented - // internally in the \doxygen{itk::ImageIO} objects. + // internally in the \doxygen{itk}{ImageIO} objects. // // Software Guide : EndLatex diff --git a/Examples/IO/StreamingImageReadWrite.cxx b/Examples/IO/StreamingImageReadWrite.cxx index 830c49f797..84a2c6c46e 100644 --- a/Examples/IO/StreamingImageReadWrite.cxx +++ b/Examples/IO/StreamingImageReadWrite.cxx @@ -25,16 +25,16 @@ // Software Guide : BeginLatex // -// As we have seen, the reading of images is managed by the class \doxygen{otb::ImageFileReader} +// As we have seen, the reading of images is managed by the class \doxygen{otb}{ImageFileReader} // while writing is performed by the class -// \doxygen{otb::ImageFileWriter}. ITK's pipeline implements +// \doxygen{otb}{ImageFileWriter}. ITK's pipeline implements // streaming. That means that a filter for which the // \code{ThreadedGenerateData} method is implemented, will only produce the // data for the region requested by the following filter in the // pipeline. Therefore, in order to use the streaming functionnality // one needs to use a filter at the end of the pipeline which // requests for adjacent regions of the image to be processed. In -// ITK, the \doxygen{itk::StreamingImageFilter} class is used for +// ITK, the \doxygen{itk}{StreamingImageFilter} class is used for // this purpose. However, ITK does not implement streaming from/to // files. This means that even if the pipeline has a small memory // footprint, the images have to be stored in memory at least after @@ -44,7 +44,7 @@ // this is transparent for the programmer, and if a streaming loop is // used at the end of the pipeline, the read operation will be // streamed. For the file writing, the -// \doxygen{otb::StreamingImageFileWriter} has to be used. +// \doxygen{otb}{StreamingImageFileWriter} has to be used. // // The first step for performing streamed reading and writing is to include the // following headers. @@ -109,7 +109,7 @@ int main( int argc, char ** argv ) // Software Guide : BeginLatex // // Then, we create one object of each type using the New() method and - // assigning the result to a \doxygen{SmartPointer}. + // assigning the result to a \doxygen{itk}{SmartPointer}. // // \index{otb::ImageFileReader!New()} // \index{otb::ImageFileWriter!New()} diff --git a/Examples/Installation/HelloWorld.cxx b/Examples/Installation/HelloWorld.cxx index 07c8a45345..d3db26d4fd 100644 --- a/Examples/Installation/HelloWorld.cxx +++ b/Examples/Installation/HelloWorld.cxx @@ -44,10 +44,10 @@ int main() // // This code instantiates an image whose pixels are represented with // type \code{unsigned short}. The image is then constructed and assigned to a -// \doxygen{SmartPointer}. Although later in the text we will discuss +// \doxygen{itk}{SmartPointer}. Although later in the text we will discuss // \code{SmartPointer}'s in detail, for now think of it as a handle on an // instance of an object (see section \ref{sec:SmartPointers} for more -// information). The \doxygen{Image} class will be described in +// information). The \doxygen{itk}{Image} class will be described in // Section~\ref{sec:ImageSection}. // // Software Guide : EndLatex diff --git a/Examples/Learning/SVMImageClassificationExample.cxx b/Examples/Learning/SVMImageClassificationExample.cxx index 8e06630efd..55a8d44fe9 100644 --- a/Examples/Learning/SVMImageClassificationExample.cxx +++ b/Examples/Learning/SVMImageClassificationExample.cxx @@ -41,7 +41,7 @@ // Software Guide : BeginLatex // This example illustrates the use of the -// \doxygen{otb::SVMClassifier} class for performing SVM +// \doxygen{otb}{SVMClassifier} class for performing SVM // classification on images. // In this example, we will use an SVM model estimated in the example // of section \ref{sec:LearningWithImages} @@ -49,9 +49,9 @@ // values only. The images used for this example are shown in // figure~\ref{fig:SVMROIS}. // The first thing to do is include the header file for the -// class. Since the \doxygen{otb::SVMClassifier} takes -// \doxygen{itk::ListSample}s as input, the class -// \doxygen{itk::PointSetToListAdaptor} is needed.\\ +// class. Since the \doxygen{otb}{SVMClassifier} takes +// \doxygen{itk}{ListSample}s as input, the class +// \doxygen{itk}{PointSetToListAdaptor} is needed.\\ // // // Software Guide : EndLatex @@ -143,7 +143,7 @@ int main(int argc, char* argv[] ) // // The image has now to be transformed to a sample which // is compatible with the classification framework. We will use a -// \doxygen{itk::Statistics::ImageToListAdaptor} for this +// \doxygen{itk}{Statistics::ImageToListAdaptor} for this // task. This class is templated over the image type used for // storing the measures. // @@ -342,7 +342,7 @@ int main(int argc, char* argv[] ) // // Only for visualization purposes, we choose to rescale the image of // classes before sving it to a file. We will use the -// \doxygen{itk::RescaleIntensityImageFilter} for this purpose. +// \doxygen{itk}{RescaleIntensityImageFilter} for this purpose. // // Software Guide : EndLatex diff --git a/Examples/Learning/SVMImageEstimatorClassificationMultiExample.cxx b/Examples/Learning/SVMImageEstimatorClassificationMultiExample.cxx index bc286eeb37..ccd4f21730 100644 --- a/Examples/Learning/SVMImageEstimatorClassificationMultiExample.cxx +++ b/Examples/Learning/SVMImageEstimatorClassificationMultiExample.cxx @@ -105,7 +105,7 @@ int main( int argc, char* argv[] ) // Software Guide : BeginLatex // -// The \doxygen{otb::SVMImageModelEstimator} class is templated over +// The \doxygen{otb}{SVMImageModelEstimator} class is templated over // the input (features) and the training (labels) images. // // Software Guide : EndLatex @@ -214,7 +214,7 @@ int main( int argc, char* argv[] ) // // The image has now to be transformed to a sample which // is compatible with the classification framework. We will use a -// \doxygen{itk::Statistics::ImageToListAdaptor} for this +// \doxygen{itk}{Statistics::ImageToListAdaptor} for this // task. This class is templated over the image type used for // storing the measures. // @@ -398,7 +398,7 @@ int main( int argc, char* argv[] ) // // Only for visualization purposes, we choose to rescale the image of // classes before sving it to a file. We will use the -// \doxygen{itk::RescaleIntensityImageFilter} for this purpose. +// \doxygen{itk}{RescaleIntensityImageFilter} for this purpose. // // Software Guide : EndLatex diff --git a/Examples/Learning/SVMImageModelEstimatorExample.cxx b/Examples/Learning/SVMImageModelEstimatorExample.cxx index 2babd53e6c..83774a9bb8 100644 --- a/Examples/Learning/SVMImageModelEstimatorExample.cxx +++ b/Examples/Learning/SVMImageModelEstimatorExample.cxx @@ -32,7 +32,7 @@ // Software Guide : BeginLatex // This example illustrates the use of the -// \doxygen{otb::SVMImageModelEstimator} class. This class allows the +// \doxygen{otb}{SVMImageModelEstimator} class. This class allows the // estimation of a SVM model (supervised learning) from a feature // image and an image of labels. In this example, we will train an SVM // to separate between water and non-water pixels by using the RGB @@ -91,7 +91,7 @@ int main( int argc, char* argv[] ) // Software Guide : BeginLatex // -// The \doxygen{otb::SVMImageModelEstimator} class is templated over +// The \doxygen{otb}{SVMImageModelEstimator} class is templated over // the input (features) and the training (labels) images. // // Software Guide : EndLatex diff --git a/Examples/Learning/SVMPointSetClassificationExample.cxx b/Examples/Learning/SVMPointSetClassificationExample.cxx index 497fa10df3..cc3cf49cdb 100644 --- a/Examples/Learning/SVMPointSetClassificationExample.cxx +++ b/Examples/Learning/SVMPointSetClassificationExample.cxx @@ -36,12 +36,12 @@ // Software Guide : BeginLatex // This example illustrates the use of the -// \doxygen{otb::SVMClassifier} class for performing SVM +// \doxygen{otb}{SVMClassifier} class for performing SVM // classification on pointsets. // The first thing to do is include the header file for the -// class. Since the \doxygen{otb::SVMClassifier} takes -// \doxygen{itk::ListSample}s as input, the class -// \doxygen{itk::PointSetToListAdaptor} is needed.\\ +// class. Since the \doxygen{otb}{SVMClassifier} takes +// \doxygen{itk}{ListSample}s as input, the class +// \doxygen{itk}{PointSetToListAdaptor} is needed.\\ // // We start by including the needed header files. // @@ -195,7 +195,7 @@ int main( int argc, char* argv[] ) // // Once the pointset is ready, we must transform it to a sample which // is compatible with the classification framework. We will use a -// \doxygen{itk::Statistics::PointSetToListAdaptor} for this +// \doxygen{itk}{Statistics::PointSetToListAdaptor} for this // task. This class is templated over the point set type used for // storing the measures. // diff --git a/Examples/Learning/SVMPointSetModelEstimatorExample.cxx b/Examples/Learning/SVMPointSetModelEstimatorExample.cxx index 4a7d40b4a7..607e8f7ae8 100644 --- a/Examples/Learning/SVMPointSetModelEstimatorExample.cxx +++ b/Examples/Learning/SVMPointSetModelEstimatorExample.cxx @@ -32,8 +32,8 @@ // Software Guide : BeginLatex // // This example illustrates the use of the -// \doxygen{otb::otbSVMPointSetModelEstimator} in order to perform the -// SVM learning from an \doxygen{itk::PointSet} data structure. +// \doxygen{otb}{otbSVMPointSetModelEstimator} in order to perform the +// SVM learning from an \doxygen{itk}{PointSet} data structure. // // The first step required to use this filter is to include its header file. // diff --git a/Examples/Patented/FuzzyConnectednessImageFilter.cxx b/Examples/Patented/FuzzyConnectednessImageFilter.cxx index e9c0557949..9138a6119b 100644 --- a/Examples/Patented/FuzzyConnectednessImageFilter.cxx +++ b/Examples/Patented/FuzzyConnectednessImageFilter.cxx @@ -23,7 +23,7 @@ // Software Guide : BeginLatex // // This example illustrates the use of the -// \doxygen{itk::SimpleFuzzyConnectednessScalarImageFilter}. This filter computes an +// \doxygen{itk}{SimpleFuzzyConnectednessScalarImageFilter}. This filter computes an // affinity map from a seed point provided by the user. This affinity map // indicates for every pixels how homogeneous is the path that will link it to // the seed point. @@ -48,7 +48,7 @@ // // Since the FuzzyConnectednessImageFilter requires an estimation of the // gray level mean and variance for the region to be segmented, we use here the -// \doxygen{itk::ConfidenceConnectedImageFilter} as a preprocessor that produces a +// \doxygen{itk}{ConfidenceConnectedImageFilter} as a preprocessor that produces a // rough segmentation and estimates from it the values of the mean and the // variance. // @@ -144,7 +144,7 @@ int main( int argc, char *argv[] ) // // The fuzzy connectedness segmentation filter is created by invoking the // \code{New()} method and assigning the result to a - // \doxygen{itk::SmartPointer}. + // \doxygen{itk}{SmartPointer}. // // \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!New()} // \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!Pointer} diff --git a/Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx b/Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx index a6c783f062..e5727be692 100644 --- a/Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx +++ b/Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx @@ -23,19 +23,14 @@ // Software Guide : BeginCommandLineArgs // INPUTS: {QB_Suburb.png} // OUTPUTS: {HybridSegmentationFuzzyVoronoiOutput.png} -// 140 125 140 25 0.2 2.0 -// Software Guide : EndCommandLineArgs -// Software Guide : BeginCommandLineArgs -// INPUTS: {QB_Suburb.png} -// OUTPUTS: {HybridSegmentationFuzzyVoronoiOutput2.png} -// 80 200 140 300 0.3 3.0 +// 111 38 75 20 0.5 3.0 // Software Guide : EndCommandLineArgs // Software Guide : BeginLatex // // This example illustrates the use of the -// \doxygen{itk::SimpleFuzzyConnectednessScalarImageFilter} and -// \doxygen{itk::VoronoiSegmentationImageFilter} to build a hybrid segmentation that +// \doxygen{itk}{SimpleFuzzyConnectednessScalarImageFilter} and +// \doxygen{itk}{VoronoiSegmentationImageFilter} to build a hybrid segmentation that // integrates fuzzy connectedness with the Voronoi diagram classification. // // Please note that the Fuzzy Connectedness algorithm is covered by a Patent @@ -93,7 +88,7 @@ int main( int argc, char *argv[] ) // a rough segmentation that yields a sample from the // region to be segmented. A binary result, representing the // sample, is used as a prior for the next step. Here, we use the - // \doxygen{itk::SimpleFuzzyConnectednessScalarImageFilter}, but we may + // \doxygen{itk}{SimpleFuzzyConnectednessScalarImageFilter}, but we may // also utilize any other image segmentation filter instead. The // result produced by the fuzzy segmentation filter is stored in a // binary image. Below, we declare the type of the image using a @@ -126,7 +121,7 @@ int main( int argc, char *argv[] ) // // The fuzzy connectedness segmentation filter is created by invoking the // \code{New()} method and assigning the result to a - // \doxygen{itk::SmartPointer}. + // \doxygen{itk}{SmartPointer}. // // \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!New()} // \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!Pointer} @@ -191,18 +186,6 @@ int main( int argc, char *argv[] ) // // Software Guide : EndLatex - // Software Guide : BeginLatex - // - // \begin{figure} \center - // \includegraphics[width=0.44\textwidth]{QB_Suburb.eps} - // \includegraphics[width=0.44\textwidth]{HybridSegmentationFuzzyVoronoiOutput2.eps} - // \itkcaption[Segmentation result for the hybrid segmentation - // approach]{Another segmentation result for the hybrid segmentation - // approach.} - // \label{fig:HybridSegmentationFuzzyVoronoiOutput2} - // \end{figure} - // - // Software Guide : EndLatex // We instantiate reader and writer types @@ -351,7 +334,7 @@ int main( int argc, char *argv[] ) // The output of the Voronoi diagram classification is an image mask with // zeros everywhere and ones inside the segmented object. This image will // appear black on many image viewers since they do not usually stretch - // the gray levels. Here, we add a \doxygen{itk::RescaleIntensityImageFilter} + // the gray levels. Here, we add a \doxygen{itk}{RescaleIntensityImageFilter} // in order to expand the dynamic range to more typical values. // // Software Guide : EndLatex @@ -391,33 +374,19 @@ int main( int argc, char *argv[] ) // \small // \begin{verbatim} //HybridSegmentationFuzzyVoronoi QB_Suburb.png Output.png - // 140 125 140 25 0.2 2.0 + // 111 38 75 20 0.5 2.0 // \end{verbatim} // \normalsize // - // $(140,125)$ specifies the index position of a seed point in the image, - // while $140$ and $25$ are the estimated mean and standard deviation, - // respectively, of the object to be segmented. Finally, $0.2$ and $2.0$ + // $(111,38)$ specifies the index position of a seed point in the image, + // while $75$ and $20$ are the estimated mean and standard deviation, + // respectively, of the object to be segmented. Finally, $0.5$ and $2.0$ // are the tolerance for the mean and standard deviation, respectively. // Figure~\ref{fig:HybridSegmentationFuzzyVoronoiOutput} shows the input // image and the binary mask resulting from the segmentation. // // Note that in order to successfully segment other images, these - // parameters have to be adjusted to reflect the data. For example, when - // segmenting the input image \code{QB\_Suburb.png} we apply the - // following new set of parameters parameters. - // - // \small - // \begin{verbatim} - //HybridSegmentationFuzzyVoronoi QB_Suburb.png Output.png - // 80 200 140 300 0.3 3.0 - // \end{verbatim} - // \normalsize - // - // Figure~\ref{fig:HybridSegmentationFuzzyVoronoiOutput2} shows the input - // image and the binary mask resulting from this segmentation. Note that, - // we can segment color (RGB) and other multi-channel images using an - // approach similar to this example. + // parameters have to be adjusted to reflect the data. // // Software Guide : EndLatex diff --git a/Examples/Segmentation/ConfidenceConnected.cxx b/Examples/Segmentation/ConfidenceConnected.cxx index 65716c3113..96760f4720 100644 --- a/Examples/Segmentation/ConfidenceConnected.cxx +++ b/Examples/Segmentation/ConfidenceConnected.cxx @@ -51,7 +51,7 @@ // \index{itk::ConfidenceConnectedImageFilter!header} // // The following example illustrates the use of the -// \doxygen{itk::ConfidenceConnectedImageFilter}. The criterion used by the +// \doxygen{itk}{ConfidenceConnectedImageFilter}. The criterion used by the // ConfidenceConnectedImageFilter is based on simple statistics of the // current region. First, the algorithm computes the mean and standard // deviation of intensity values for all the pixels currently included in the @@ -78,7 +78,7 @@ // considered for inclusion in the region. // // Let's look at the minimal code required to use this algorithm. First, the -// following header defining the \doxygen{itk::ConfidenceConnectedImageFilter} class +// following header defining the \doxygen{itk}{ConfidenceConnectedImageFilter} class // must be included. // // Software Guide : EndLatex @@ -98,7 +98,7 @@ // Noise present in the image can reduce the capacity of this filter to grow // large regions. When faced with noisy images, it is usually convenient to // pre-process the image by using an edge-preserving smoothing filter. In this particular example we use the -// \doxygen{itk::CurvatureFlowImageFilter}, hence we need to include its header +// \doxygen{itk}{CurvatureFlowImageFilter}, hence we need to include its header // file. // // Software Guide : EndLatex @@ -173,7 +173,7 @@ int main( int argc, char *argv[] ) // Software Guide : BeginLatex // // Next the filter is created by invoking the \code{New()} method and - // assigning the result to a \doxygen{itk::SmartPointer}. + // assigning the result to a \doxygen{itk}{SmartPointer}. // // Software Guide : EndLatex @@ -306,7 +306,7 @@ int main( int argc, char *argv[] ) // \emph{typical} region of the structure to be segmented. A // small neighborhood around the seed point will be used to compute the // initial mean and standard deviation for the inclusion criterion. The - // seed is passed in the form of a \doxygen{itk::Index} to the \code{SetSeed()} + // seed is passed in the form of a \doxygen{itk}{Index} to the \code{SetSeed()} // method. // // \index{itk::ConfidenceConnectedImageFilter!SetSeed()} @@ -381,7 +381,7 @@ int main( int argc, char *argv[] ) // \itkcaption[ConnectedThreshold example parameters]{Parameters used for // segmenting some structures shown in // Figure~\ref{fig:ConnectedThresholdOutput} with the filter - // \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConfidenceConnectedThresholdOutput}} + // \doxygen{itk}{ConnectedThresholdImageFilter}.\label{tab:ConfidenceConnectedThresholdOutput}} // \end{table} // // diff --git a/Examples/Segmentation/ConnectedThresholdImageFilter.cxx b/Examples/Segmentation/ConnectedThresholdImageFilter.cxx index 808492b413..a7a14a940c 100644 --- a/Examples/Segmentation/ConnectedThresholdImageFilter.cxx +++ b/Examples/Segmentation/ConnectedThresholdImageFilter.cxx @@ -50,7 +50,7 @@ // Software Guide : BeginLatex // // The following example illustrates the use of the -// \doxygen{itk::ConnectedThresholdImageFilter}. This filter uses the +// \doxygen{itk}{ConnectedThresholdImageFilter}. This filter uses the // flood fill iterator. Most of the algorithmic complexity of a region // growing method comes from visiting neighboring pixels. The flood // fill iterator assumes this responsibility and greatly simplifies @@ -92,7 +92,7 @@ // Noise present in the image can reduce the capacity of this filter to grow // large regions. When faced with noisy images, it is usually convenient to // pre-process the image by using an edge-preserving smoothing filter. In this particular example we use the -// \doxygen{CurvatureFlowImageFilter}, hence we need to include its header +// \doxygen{itk}{CurvatureFlowImageFilter}, hence we need to include its header // file. // // Software Guide : EndLatex @@ -167,7 +167,7 @@ int main( int argc, char *argv[]) // Software Guide : BeginLatex // // Then the filter is created by invoking the \code{New()} method and - // assigning the result to a \doxygen{itk::SmartPointer}. + // assigning the result to a \doxygen{itk}{SmartPointer}. // // Software Guide : EndLatex @@ -278,7 +278,7 @@ int main( int argc, char *argv[]) // The initialization of the algorithm requires the user to provide a seed // point. It is convenient to select this point to be placed in a // \emph{typical} region of the structure to be segmented. The - // seed is passed in the form of a \doxygen{itk::Index} to the \code{SetSeed()} + // seed is passed in the form of a \doxygen{itk}{Index} to the \code{SetSeed()} // method. // // \index{itk::ConnectedThresholdImageFilter!SetSeed()} @@ -341,7 +341,7 @@ int main( int argc, char *argv[]) // \itkcaption[ConnectedThreshold example parameters]{Parameters used for // segmenting some structures shown in // Figure~\ref{fig:ConnectedThresholdOutput} with the filter - // \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConnectedThresholdOutput}} + // \doxygen{itk}{ConnectedThresholdImageFilter}.\label{tab:ConnectedThresholdOutput}} // \end{table} // // \begin{figure} \center diff --git a/Examples/Segmentation/FastMarchingImageFilter.cxx b/Examples/Segmentation/FastMarchingImageFilter.cxx index 3b19fb3f7b..b30b3f9b34 100644 --- a/Examples/Segmentation/FastMarchingImageFilter.cxx +++ b/Examples/Segmentation/FastMarchingImageFilter.cxx @@ -53,7 +53,7 @@ // can be used. // // The following example illustrates the use of the -// \doxygen{itk::FastMarchingImageFilter}. This filter implements a fast marching +// \doxygen{itk}{FastMarchingImageFilter}. This filter implements a fast marching // solution to a simple level set evolution problem. In this example, the // speed term used in the differential equation is expected to be provided by // the user in the form of an image. This image is typically computed as a @@ -90,12 +90,12 @@ // Figure~\ref{fig:FastMarchingCollaborationDiagram} shows the major components // involved in the application of the FastMarchingImageFilter to a // segmentation task. It involves an initial stage of smoothing using the -// \doxygen{itk::CurvatureAnisotropicDiffusionImageFilter}. The smoothed image is +// \doxygen{itk}{CurvatureAnisotropicDiffusionImageFilter}. The smoothed image is // passed as the input to the -// \doxygen{itk::GradientMagnitudeRecursiveGaussianImageFilter} and then to the -// \doxygen{itk::SigmoidImageFilter}. Finally, the output of the +// \doxygen{itk}{GradientMagnitudeRecursiveGaussianImageFilter} and then to the +// \doxygen{itk}{SigmoidImageFilter}. Finally, the output of the // FastMarchingImageFilter is passed to a -// \doxygen{itk::BinaryThresholdImageFilter} in order to produce a binary mask +// \doxygen{itk}{BinaryThresholdImageFilter} in order to produce a binary mask // representing the segmented object. // // The code in the following example illustrates the typical setup of a @@ -132,7 +132,7 @@ // Software Guide : BeginLatex // -// Of course, we will need the \doxygen{otb::Image} class and the +// Of course, we will need the \doxygen{otb}{Image} class and the // FastMarchingImageFilter class. Hence we include their headers. // // Software Guide : EndLatex @@ -158,8 +158,8 @@ // Software Guide : BeginLatex // -// Reading and writing images will be done with the \doxygen{otb::ImageFileReader} -// and \doxygen{otb::ImageFileWriter}. +// Reading and writing images will be done with the \doxygen{otb}{ImageFileReader} +// and \doxygen{otb}{ImageFileWriter}. // // Software Guide : EndLatex @@ -169,7 +169,7 @@ // Software Guide : EndCodeSnippet -// The \doxygen{itk::RescaleIntensityImageFilter} is used to renormailize the +// The \doxygen{itk}{RescaleIntensityImageFilter} is used to renormailize the // output of filters before sending them to files. // #include "itkRescaleIntensityImageFilter.h" @@ -291,7 +291,7 @@ int main( int argc, char *argv[] ) // Software Guide : BeginLatex // // Then, the filter is created by invoking the \code{New()} method and - // assigning the result to a \doxygen{itk::SmartPointer}. + // assigning the result to a \doxygen{itk}{SmartPointer}. // // Software Guide : EndLatex @@ -514,7 +514,7 @@ int main( int argc, char *argv[] ) // Software Guide : BeginLatex // // Nodes are created as stack variables and initialized with a value and an - // \doxygen{itk::Index} position. + // \doxygen{itk}{Index} position. // // \index{itk::FastMarchingImageFilter!Seed initialization} // @@ -749,11 +749,11 @@ int main( int argc, char *argv[] ) // // \relatedClasses // \begin{itemize} - // \item \doxygen{itk::ShapeDetectionLevelSetImageFilter} - // \item \doxygen{itk::GeodesicActiveContourLevelSetImageFilter} - // \item \doxygen{itk::ThresholdSegmentationLevelSetImageFilter} - // \item \doxygen{itk::CannySegmentationLevelSetImageFilter} - // \item \doxygen{itk::LaplacianSegmentationLevelSetImageFilter} + // \item \doxygen{itk}{ShapeDetectionLevelSetImageFilter} + // \item \doxygen{itk}{GeodesicActiveContourLevelSetImageFilter} + // \item \doxygen{itk}{ThresholdSegmentationLevelSetImageFilter} + // \item \doxygen{itk}{CannySegmentationLevelSetImageFilter} + // \item \doxygen{itk}{LaplacianSegmentationLevelSetImageFilter} // \end{itemize} // // See the ITK Software Guide for examples of the use of these classes. diff --git a/Examples/Segmentation/IsolatedConnectedImageFilter.cxx b/Examples/Segmentation/IsolatedConnectedImageFilter.cxx index 9250c74daa..61f28b7a8d 100644 --- a/Examples/Segmentation/IsolatedConnectedImageFilter.cxx +++ b/Examples/Segmentation/IsolatedConnectedImageFilter.cxx @@ -40,8 +40,8 @@ // Software Guide : BeginLatex // // The following example illustrates the use of the -// \doxygen{itk::IsolatedConnectedImageFilter}. This filter is a close variant of -// the \doxygen{itk::ConnectedThresholdImageFilter}. In this filter two seeds and a +// \doxygen{itk}{IsolatedConnectedImageFilter}. This filter is a close variant of +// the \doxygen{itk}{ConnectedThresholdImageFilter}. In this filter two seeds and a // lower threshold are provided by the user. The filter will grow a region // connected to the first seed and \textbf{not connected} to the second one. In // order to do this, the filter finds an intensity value that could be used as @@ -201,7 +201,7 @@ int main( int argc, char *argv[] ) // Software Guide : BeginLatex // - // As in the \doxygen{itk::ConnectedThresholdImageFilter} we must now specify + // As in the \doxygen{itk}{ConnectedThresholdImageFilter} we must now specify // the intensity value to be set on the output pixels and at least one // seed point to define the initial region. // @@ -264,7 +264,7 @@ int main( int argc, char *argv[] ) // that of the input image. As a reminder of this fact, Figure // \ref{fig:IsolatedConnectedImageFilterOutput} presents, from left to // right, the input image and the result of smoothing with the - // \doxygen{CurvatureFlowImageFilter} followed by segmentation results. + // \doxygen{itk}{CurvatureFlowImageFilter} followed by segmentation results. // // This filter is intended to be used in cases where adjacent // structures are difficult to separate. Selecting one seed in one structure diff --git a/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx b/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx index 8418a5fdb3..ae5421b682 100644 --- a/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx +++ b/Examples/Segmentation/NeighborhoodConnectedImageFilter.cxx @@ -46,8 +46,8 @@ // Software Guide : BeginLatex // // The following example illustrates the use of the -// \doxygen{itk::NeighborhoodConnectedImageFilter}. This filter is a close variant -// of the \doxygen{itk::ConnectedThresholdImageFilter}. On one hand, the +// \doxygen{itk}{NeighborhoodConnectedImageFilter}. This filter is a close variant +// of the \doxygen{itk}{ConnectedThresholdImageFilter}. On one hand, the // ConnectedThresholdImageFilter accepts a pixel in the region if its intensity // is in the interval defined by two user-provided threshold values. The // NeighborhoodConnectedImageFilter, on the other hand, will only accept a @@ -76,7 +76,7 @@ // Software Guide : BeginLatex // -// The \doxygen{itk::CurvatureFlowImageFilter} is used here to smooth the image +// The \doxygen{itk}{CurvatureFlowImageFilter} is used here to smooth the image // while preserving edges. // // Software Guide : EndLatex @@ -151,7 +151,7 @@ int main( int argc, char *argv[] ) // Software Guide : BeginLatex // // Then, the filter is created by invoking the \code{New()} method and - // assigning the result to a \doxygen{itk::SmartPointer}. + // assigning the result to a \doxygen{itk}{SmartPointer}. // // Software Guide : EndLatex @@ -328,7 +328,7 @@ int main( int argc, char *argv[] ) // \itkcaption[NeighborhoodConnectedThreshold example parameters]{Parameters used for // segmenting some structures shown in // Figure~\ref{fig:NeighborhoodConnectedThresholdOutput} with the filter - // \doxygen{itk::NeighborhoodConnectedThresholdImageFilter}.\label{tab:NeighborhoodConnectedThresholdOutput}} + // \doxygen{itk}{NeighborhoodConnectedThresholdImageFilter}.\label{tab:NeighborhoodConnectedThresholdOutput}} // \end{table} // // \begin{figure} \center diff --git a/Examples/Segmentation/OtsuMultipleThresholdImageFilter.cxx b/Examples/Segmentation/OtsuMultipleThresholdImageFilter.cxx index 7e0eb76254..8edf2aa75d 100755 --- a/Examples/Segmentation/OtsuMultipleThresholdImageFilter.cxx +++ b/Examples/Segmentation/OtsuMultipleThresholdImageFilter.cxx @@ -33,7 +33,7 @@ // Software Guide : EndCommandLineArgs // Software Guide : BeginLatex -// This example illustrates how to use the \doxygen{itk::OtsuMultipleThresholdsCalculator}. +// This example illustrates how to use the \doxygen{itk}{OtsuMultipleThresholdsCalculator}. // Software Guide : EndLatex // Software Guide : BeginCodeSnippet @@ -205,7 +205,7 @@ int main( int argc, char * argv[] ) // // \relatedClasses // \begin{itemize} - // \item \doxygen{itk::ThresholdImageFilter} + // \item \doxygen{itk}{ThresholdImageFilter} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/Segmentation/OtsuThresholdImageFilter.cxx b/Examples/Segmentation/OtsuThresholdImageFilter.cxx index f834da1964..60787a9bfc 100755 --- a/Examples/Segmentation/OtsuThresholdImageFilter.cxx +++ b/Examples/Segmentation/OtsuThresholdImageFilter.cxx @@ -34,7 +34,7 @@ // Software Guide : BeginLatex // -// This example illustrates how to use the \doxygen{itk::OtsuThresholdImageFilter}. +// This example illustrates how to use the \doxygen{itk}{OtsuThresholdImageFilter}. // // Software Guide : EndLatex @@ -97,7 +97,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileReader} class is also instantiated in order to read + // An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read // image data from a file. (See Section \ref{sec:IO} on page // \pageref{sec:IO} for more information about reading // and writing data.) @@ -111,7 +111,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // - // An \doxygen{otb::ImageFileWriter} is instantiated in order to write the output + // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the output // image to a file. // // Software Guide : EndLatex @@ -125,7 +125,7 @@ int main( int argc, char * argv[] ) // Software Guide : BeginLatex // // Both the filter and the reader are created by invoking their \code{New()} - // methods and assigning the result to \doxygen{SmartPointer}s. + // methods and assigning the result to \doxygen{itk}{SmartPointer}s. // // Software Guide : EndLatex @@ -238,7 +238,7 @@ int main( int argc, char * argv[] ) // // \relatedClasses // \begin{itemize} - // \item \doxygen{itk::ThresholdImageFilter} + // \item \doxygen{itk}{ThresholdImageFilter} // \end{itemize} // // Software Guide : EndLatex diff --git a/Examples/Segmentation/WatershedSegmentation.cxx b/Examples/Segmentation/WatershedSegmentation.cxx index a9b271cc97..2225c49f4f 100644 --- a/Examples/Segmentation/WatershedSegmentation.cxx +++ b/Examples/Segmentation/WatershedSegmentation.cxx @@ -44,7 +44,7 @@ // Software Guide : BeginLatex // // The following example illustrates how to preprocess and segment images -// using the \doxygen{itk::WatershedImageFilter}. Note that the care with which +// using the \doxygen{itk}{WatershedImageFilter}. Note that the care with which // the data is preprocessed will greatly affect the quality of your result. // Typically, the best results are obtained by preprocessing the original // image with an edge-preserving diffusion filter, such as one of the @@ -54,9 +54,9 @@ // object boundaries. A suitable height function for many applications can // be generated as the gradient magnitude of the image to be segmented. // -// The \doxygen{itk::VectorGradientMagnitudeAnisotropicDiffusionImageFilter} class +// The \doxygen{itk}{VectorGradientMagnitudeAnisotropicDiffusionImageFilter} class // is used to smooth the image and the -// \doxygen{itk::VectorGradientMagnitudeImageFilter} is used to generate the +// \doxygen{itk}{VectorGradientMagnitudeImageFilter} is used to generate the // height function. We begin by including all preprocessing filter header // files and the header file for the WatershedImageFilter. We // use the vector versions of these filters because the input data is a color @@ -96,10 +96,10 @@ int main( int argc, char *argv[] ) // work properly. The preprocessing stages are done directly on the // vector-valued data and the segmentation is done using floating point // scalar data. Images are converted from RGB pixel type to - // numerical vector type using \doxygen{VectorCastImageFilter}. + // numerical vector type using \doxygen{itk}{VectorCastImageFilter}. // Please pay attention to the fact that we are using - // \doxygen{itk::Image}s since the - // \doxygen{itk::VectorGradientMagnitudeImageFilter} has some + // \doxygen{itk}{Image}s since the + // \doxygen{itk}{VectorGradientMagnitudeImageFilter} has some // internal typedefs which make polymorfism impossible. // Software Guide : EndLatex @@ -196,10 +196,10 @@ int main( int argc, char *argv[] ) // for the purposes of this example, we will convert it to RGB pixels. RGB // images have the advantage that they can be saved as a simple png file // and viewed using any standard image viewer software. The - // \subdoxygen{itk::Functor}{ScalarToRGBPixelFunctor} class is a special + // \subdoxygen{itk}{Functor}{ScalarToRGBPixelFunctor} class is a special // function object designed to hash a scalar value into an - // \doxygen{itk::RGBPixel}. Plugging this functor into the - // \doxygen{itk::UnaryFunctorImageFilter} creates an image filter for that + // \doxygen{itk}{RGBPixel}. Plugging this functor into the + // \doxygen{itk}{UnaryFunctorImageFilter} creates an image filter for that // converts scalar images to RGB images. // // Software Guide : EndLatex diff --git a/Examples/Visu/GreyVisuExample.cxx b/Examples/Visu/GreyVisuExample.cxx index 503d0733e2..67b3904adb 100644 --- a/Examples/Visu/GreyVisuExample.cxx +++ b/Examples/Visu/GreyVisuExample.cxx @@ -26,7 +26,7 @@ // Software Guide : BeginLatex // // \textbf{FIXME !! This example segfaults (see bug no. 27)}. - // This example shows the use of the \doxygen{otb::ImageViewer} + // This example shows the use of the \doxygen{otb}{ImageViewer} // class for greylevel image visualization. As usual, we start by // including the header file for the class. // @@ -124,7 +124,7 @@ int main( int argc, char ** argv ) // mevel image visualization.} // \label{fig:VisuGrey} // \end{figure} - // The the \doxygen{otb::ImageViewer} class creates 3 windows (see + // The the \doxygen{otb}{ImageViewer} class creates 3 windows (see // figure \ref{fig:VisuGrey}) for an improved visualization of large // images. This procedure is inspired from the navigation window of // the Gimp and other image visualization tools. The navigation diff --git a/Examples/Visu/VisuExample1.cxx b/Examples/Visu/VisuExample1.cxx index 06826c6250..66916081ca 100644 --- a/Examples/Visu/VisuExample1.cxx +++ b/Examples/Visu/VisuExample1.cxx @@ -25,7 +25,7 @@ // Software Guide : BeginLatex // - // This example shows the use of the \doxygen{otb::ImageViewer} + // This example shows the use of the \doxygen{otb}{ImageViewer} // class for image visualization. As usual, we start by // including the header file for the class. // @@ -122,7 +122,7 @@ int main( int argc, char ** argv ) // \itkcaption[Image visualization.]{Example of image visualization.} // \label{fig:Visu1} // \end{figure} - // The the \doxygen{otb::ImageViewer} class creates 3 windows (see + // The the \doxygen{otb}{ImageViewer} class creates 3 windows (see // figure \ref{fig:Visu1}) for an improved visualization of large // images. This procedure is inspired from the navigation window of // the Gimp and other image visualization tools. The navigation -- GitLab