diff --git a/Examples/Patented/CMakeLists.txt b/Examples/Patented/CMakeLists.txt
index 6fef8431d92517d73343e604b6d8ab8be0fa5e37..b4afe15681ee4a6738f5dba73656c3365900119f 100644
--- a/Examples/Patented/CMakeLists.txt
+++ b/Examples/Patented/CMakeLists.txt
@@ -1,13 +1,6 @@
 project(PatentedExamples)
 include_regular_expression("^.*$")
 
-
-#add_executable(FuzzyConnectednessImageFilter FuzzyConnectednessImageFilter.cxx )
-#target_link_libraries(FuzzyConnectednessImageFilter OTBIO OTBCommon )
-
-#add_executable(HybridSegmentationFuzzyVoronoi HybridSegmentationFuzzyVoronoi.cxx )
-#target_link_libraries(HybridSegmentationFuzzyVoronoi OTBIO OTBCommon )
-
 #Examples using SIFT
 if(OTB_USE_SIFTFAST)
 add_executable(SIFTDisparityMapEstimation SIFTDisparityMapEstimation.cxx )
diff --git a/Examples/Patented/FuzzyConnectednessImageFilter.cxx b/Examples/Patented/FuzzyConnectednessImageFilter.cxx
deleted file mode 100644
index 6b9b043eb2ac408b17ec215c8268dee9cece32a9..0000000000000000000000000000000000000000
--- a/Examples/Patented/FuzzyConnectednessImageFilter.cxx
+++ /dev/null
@@ -1,267 +0,0 @@
-/*=========================================================================
-
-  Program:   ORFEO Toolbox
-  Language:  C++
-  Date:      $Date$
-  Version:   $Revision$
-
-
-  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
-  See OTBCopyright.txt for details.
-
-
-     This software is distributed WITHOUT ANY WARRANTY; without even
-     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
-     PURPOSE.  See the above copyright notices for more information.
-
-=========================================================================*/
-
-
-// Software Guide : BeginLatex
-//
-// This example illustrates the use of the
-// \doxygen{itk}{SimpleFuzzyConnectednessScalarImageFilter}. This filter computes an
-// affinity map from a seed point provided by the user. This affinity map
-// indicates for every pixels how homogeneous is the path that will link it to
-// the seed point.
-//
-// Please note that the Fuzzy Connectedness algorithm is covered by a Patent
-// \cite{Udupa1998}. For this reason the current example is located in the
-// \texttt{Examples/Patented} subdirectory.
-//
-// In order to use this algorithm we should first include the header files of
-// the filter and the image class.
-//
-// Software Guide : EndLatex
-
-// Software Guide : BeginCodeSnippet
-#include "itkSimpleFuzzyConnectednessScalarImageFilter.h"
-#include "otbImage.h"
-// Software Guide : EndCodeSnippet
-
-// Software Guide : BeginLatex
-//
-// Since the FuzzyConnectednessImageFilter requires an estimation of the
-// gray level mean and variance for the region to be segmented, we use here the
-// \doxygen{itk}{ConfidenceConnectedImageFilter} as a preprocessor that produces a
-// rough segmentation and estimates from it the values of the mean and the
-// variance.
-//
-// Software Guide : EndLatex
-
-// Software Guide : BeginCodeSnippet
-#include "itkConfidenceConnectedImageFilter.h"
-// Software Guide : EndCodeSnippet
-
-#include "otbImageFileReader.h"
-#include "otbImageFileWriter.h"
-
-int main(int argc, char *argv[])
-{
-  if (argc < 7)
-    {
-    std::cerr << "Missing Parameters " << std::endl;
-    std::cerr << "Usage: " << argv[0];
-    std::cerr << " inputImage outputImage outputAffinityMap " << std::endl;
-    std::cerr << " seedX seedY multiplier " << std::endl;
-    return 1;
-    }
-
-  //  Software Guide : BeginLatex
-  //
-  //  Next, we declare the pixel type and image dimension and
-  //  specify the image type to be used as input.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef  float InputPixelType;
-  const unsigned int Dimension = 2;
-  typedef otb::Image<InputPixelType, Dimension> InputImageType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  Fuzzy connectedness computes first the affinity map and then thresholds
-  //  its values in order to get a binary image as output. The type of the
-  //  binary image is provided as the second template parameter of the filter.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef   unsigned char                        BinaryPixelType;
-  typedef otb::Image<BinaryPixelType, Dimension> BinaryImageType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The Confidence connected filter type is instantiated using the input
-  //  image type and a binary image type for output.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef itk::ConfidenceConnectedImageFilter<
-      InputImageType,
-      BinaryImageType
-      >  ConfidenceConnectedFilterType;
-
-  ConfidenceConnectedFilterType::Pointer confidenceConnectedFilter =
-    ConfidenceConnectedFilterType::New();
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The fuzzy segmentation filter type is instantiated here using the input
-  //  and binary image types as template parameters.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef itk::SimpleFuzzyConnectednessScalarImageFilter<
-      InputImageType,
-      BinaryImageType
-      >  FuzzySegmentationFilterType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The fuzzy connectedness segmentation filter is created by invoking the
-  //  \code{New()} method and assigning the result to a
-  //  \doxygen{itk}{SmartPointer}.
-  //
-  //  \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!New()}
-  //  \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!Pointer}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  FuzzySegmentationFilterType::Pointer fuzzysegmenter =
-    FuzzySegmentationFilterType::New();
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The affinity map can be accessed through the type \code{FuzzySceneType}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef FuzzySegmentationFilterType::FuzzySceneType FuzzySceneType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  // We instantiate reader and writer types
-  //
-  //  Software Guide : EndLatex
-  typedef  otb::ImageFileReader<InputImageType>  ReaderType;
-  typedef  otb::ImageFileWriter<BinaryImageType> WriterType;
-  typedef  otb::ImageFileWriter<FuzzySceneType>  FuzzyWriterType;
-
-  ReaderType::Pointer reader = ReaderType::New();
-  WriterType::Pointer writer = WriterType::New();
-
-  FuzzyWriterType::Pointer fwriter = FuzzyWriterType::New();
-
-  reader->SetFileName(argv[1]);
-  writer->SetFileName(argv[2]);
-  fwriter->SetFileName(argv[3]);
-
-  InputImageType::IndexType index;
-
-  index[0] = atoi(argv[4]);
-  index[1] = atoi(argv[5]);
-
-  const double varianceMultiplier = atof(argv[6]);
-
-  //  Software Guide : BeginLatex
-  //
-  //  The output of the reader is passed as input to the ConfidenceConnected image filter.
-  //  Then the filter is executed in order to obtain estimations of the mean and variance
-  //  gray values for the region to be segmented.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  confidenceConnectedFilter->SetInput(reader->GetOutput());
-  confidenceConnectedFilter->SetMultiplier(varianceMultiplier);
-  confidenceConnectedFilter->SetNumberOfIterations(2);
-  confidenceConnectedFilter->AddSeed(index);
-
-  confidenceConnectedFilter->Update();
-  // Software Guide : EndCodeSnippet
-
-  WriterType::Pointer confidenceWriter = WriterType::New();
-  confidenceWriter->SetInput(confidenceConnectedFilter->GetOutput());
-  confidenceWriter->SetFileName("confidenceConnectedPreprocessing.png");
-  confidenceWriter->Update();
-
-  //  Software Guide : BeginLatex
-  //
-  //  The input that is passed to the fuzzy segmentation filter is taken from
-  //  the reader.
-  //
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetInput()}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  fuzzysegmenter->SetInput(reader->GetOutput());
-  // Software Guide : EndCodeSnippet
-
-  const double meanEstimation      = confidenceConnectedFilter->GetMean();
-  const double varianceEstimation  = confidenceConnectedFilter->GetVariance();
-
-  std::cout << "Mean     estimation = " << meanEstimation     << std::endl;
-  std::cout << "Variance estimation = " << varianceEstimation << std::endl;
-
-  //  Software Guide : BeginLatex
-  //
-  //  The parameters of the fuzzy segmentation filter are defined here. A seed
-  //  point is provided with the method \code{SetObjectsSeed()} in order to
-  //  initialize the region to be grown.  Estimated values for the mean and
-  //  variance of the object intensities are also provided with the methods
-  //  \code{SetMean()} and \code{SetVariance()}, respectively. A threshold
-  //  value for generating the binary object is preset with the method
-  //  \code{SetThreshold()}.  For details describing the role of the mean and
-  //  variance on the computation of the segmentation, please see
-  //  \cite{Udupa1996}.
-  //
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetObjectsSeed()}
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetMean()}
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetVariance()}
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetThreshold()}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  fuzzysegmenter->SetObjectSeed(index);
-  fuzzysegmenter->SetMean(meanEstimation);
-  fuzzysegmenter->SetVariance(varianceEstimation);
-  fuzzysegmenter->SetThreshold(0.5);
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The execution of the fuzzy segmentation filter is triggered by the
-  //  \code{Update()} method.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  fuzzysegmenter->Update();
-  // Software Guide : EndCodeSnippet
-
-  // Software Guide : BeginCodeSnippet
-  writer->SetInput(fuzzysegmenter->GetOutput());
-  writer->Update();
-  // Software Guide : EndCodeSnippet
-
-  // Software Guide : BeginCodeSnippet
-  fwriter->SetInput(fuzzysegmenter->GetFuzzyScene());
-  fwriter->Update();
-  // Software Guide : EndCodeSnippet
-
-  return EXIT_SUCCESS;
-}
diff --git a/Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx b/Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx
deleted file mode 100644
index 5bcea7bdc8e0a37fafcb3d5af4a7b1f2b88c1ac4..0000000000000000000000000000000000000000
--- a/Examples/Patented/HybridSegmentationFuzzyVoronoi.cxx
+++ /dev/null
@@ -1,370 +0,0 @@
-/*=========================================================================
-
-  Program:   ORFEO Toolbox
-  Language:  C++
-  Date:      $Date$
-  Version:   $Revision$
-
-
-  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
-  See OTBCopyright.txt for details.
-
-
-     This software is distributed WITHOUT ANY WARRANTY; without even
-     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
-     PURPOSE.  See the above copyright notices for more information.
-
-=========================================================================*/
-
-
-//  Software Guide : BeginCommandLineArgs
-//    INPUTS: {QB_Suburb.png}
-//    OUTPUTS: {HybridSegmentationFuzzyVoronoiOutput.png}
-//    111 38 75 20 0.5 3.0
-//  Software Guide : EndCommandLineArgs
-
-// Software Guide : BeginLatex
-//
-// This example illustrates the use of the
-// \doxygen{itk}{SimpleFuzzyConnectednessScalarImageFilter} and
-// \doxygen{itk}{VoronoiSegmentationImageFilter} to build a hybrid segmentation that
-// integrates fuzzy connectedness with the Voronoi diagram classification.
-//
-// Please note that the Fuzzy Connectedness algorithm is covered by a Patent
-// \cite{Udupa1998}. For this reason the current example is located in the
-// \texttt{Examples/Patented} subdirectory.
-//
-// First, we include the header files of the two filters.
-//
-// Software Guide : EndLatex
-
-// Software Guide : BeginCodeSnippet
-#include "itkSimpleFuzzyConnectednessScalarImageFilter.h"
-#include "itkVoronoiSegmentationImageFilter.h"
-// Software Guide : EndCodeSnippet
-
-#include "otbImage.h"
-#include "otbImageFileReader.h"
-#include "otbImageFileWriter.h"
-
-#include "itkRescaleIntensityImageFilter.h"
-
-int main(int argc, char *argv[])
-{
-  if (argc < 9)
-    {
-    std::cerr << "Missing Parameters " << std::endl;
-    std::cerr << "Usage: " << argv[0];
-    std::cerr << " inputImage  outputImage seedX seedY " << std::endl;
-    std::cerr <<
-    " estimateMean estimateVariance (used by FuzzySegmentation) " << std::endl;
-    std::cerr <<
-    " meanTolerance standardDeviationTolerance (used by VoronoiSegmentation) "
-              << std::endl;
-    return 1;
-    }
-
-  //  Software Guide : BeginLatex
-  //
-  //  Next, we declare the pixel type and image dimension and
-  //  specify the image type to be used as input.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef  float InputPixelType;
-  const unsigned int Dimension = 2;
-  typedef otb::Image<InputPixelType, Dimension> InputImageType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  Fuzzy connectedness segmentation is performed first to generate
-  //  a rough segmentation that yields a sample from the
-  //  region to be segmented.  A binary result, representing the
-  //  sample, is used as a prior for the next step.  Here, we use the
-  //  \doxygen{itk}{SimpleFuzzyConnectednessScalarImageFilter}, but we may
-  //  also utilize any other image segmentation filter instead.  The
-  //  result produced by the fuzzy segmentation filter is stored in a
-  //  binary image.  Below, we declare the type of the image using a
-  //  pixel type and a spatial dimension.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef unsigned char                          BinaryPixelType;
-  typedef otb::Image<BinaryPixelType, Dimension> BinaryImageType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The fuzzy segmentation filter type is instantiated here using the input
-  //  and binary image types as template parameters.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef   itk::SimpleFuzzyConnectednessScalarImageFilter<
-      InputImageType,
-      BinaryImageType
-      >  FuzzySegmentationFilterType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The fuzzy connectedness segmentation filter is created by invoking the
-  //  \code{New()} method and assigning the result to a
-  //  \doxygen{itk}{SmartPointer}.
-  //
-  //  \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!New()}
-  //  \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!Pointer}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  FuzzySegmentationFilterType::Pointer fuzzysegmenter =
-    FuzzySegmentationFilterType::New();
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  In the next step of the hybrid segmentation method, the prior generated
-  //  from the fuzzy segmentation is used to build a homogeneity measurement
-  //  for the object.  A VoronoiSegmentationImageFilter uses the
-  //  homogeneity measurement to drive iterative subdivision of Voronoi regions
-  //  and to generate the final segmentation result (for details, please see
-  //  \cite{Imielinska2000b}).  In this example, the result of the
-  //  VoronoiSegmentationImageFilter is sent to a writer. Its output
-  //  type is conveniently declared as one that is compatible with the writer.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef unsigned char                          OutputPixelType;
-  typedef otb::Image<OutputPixelType, Dimension> OutputImageType;
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The following lines instantiate  the Voronoi segmentation filter.
-  //
-  //  \index{itk::Voronoi\-Segmentation\-Image\-Filter!New()}
-  //  \index{itk::Voronoi\-Segmentation\-Image\-Filter!Pointer}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef  itk::VoronoiSegmentationImageFilter<
-      InputImageType,
-      OutputImageType,
-      BinaryImageType>
-  VoronoiSegmentationFilterType;
-
-  VoronoiSegmentationFilterType::Pointer voronoisegmenter =
-    VoronoiSegmentationFilterType::New();
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  // \begin{figure} \center
-  // \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
-  // \includegraphics[width=0.44\textwidth]{HybridSegmentationFuzzyVoronoiOutput.eps}
-  // \itkcaption[Segmentation results for the hybrid segmentation
-  // approach]{Segmentation results for the hybrid segmentation approach.}
-  // \label{fig:HybridSegmentationFuzzyVoronoiOutput}
-  // \end{figure}
-  //
-  //  Software Guide : EndLatex
-
-  // We instantiate reader and writer types
-  //
-  typedef  otb::ImageFileReader<InputImageType>  ReaderType;
-  typedef  otb::ImageFileWriter<OutputImageType> WriterType;
-
-  ReaderType::Pointer reader = ReaderType::New();
-  WriterType::Pointer writer = WriterType::New();
-
-  reader->SetFileName(argv[1]);
-  writer->SetFileName(argv[2]);
-
-  //  Software Guide : BeginLatex
-  //
-  //  The input that is passed to the fuzzy segmentation filter is taken from
-  //  the reader.
-  //
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetInput()}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  fuzzysegmenter->SetInput(reader->GetOutput());
-  // Software Guide : EndCodeSnippet
-
-  InputImageType::IndexType index;
-
-  index[0] = atoi(argv[3]);
-  index[1] = atoi(argv[4]);
-
-  const float mean              = atof(argv[5]);
-  const float variance          = atof(argv[6]);
-
-  const float meanTolerance     = atof(argv[7]);
-  const float stdTolerance      = atof(argv[8]);
-
-  //  Software Guide : BeginLatex
-  //
-  //  The parameters of the fuzzy segmentation filter are defined here. A seed
-  //  point is provided with the method \code{SetObjectSeed()} in order to
-  //  initialize the region to be grown.  Estimated values for the mean and
-  //  variance of the object intensities are also provided with the methods
-  //  \code{SetMean()} and \code{SetVariance()}, respectively. A threshold
-  //  value for generating the binary object is preset with the method
-  //  \code{SetThreshold()}.  For details describing the role of the mean and
-  //  variance on the computation of the segmentation, please see
-  //  \cite{Udupa1996}.
-  //
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetObjectSeed()}
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetMean()}
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetVariance()}
-  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetThreshold()}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  fuzzysegmenter->SetObjectSeed(index);
-  fuzzysegmenter->SetMean(mean);
-  fuzzysegmenter->SetVariance(variance);
-  fuzzysegmenter->SetThreshold(0.5);
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The execution of the fuzzy segmentation filter is triggered by the
-  //  \code{Update()} method.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  fuzzysegmenter->Update();
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The input to the Voronoi diagram classification filter is obtained from
-  //  the reader and the prior is obtained from the fuzzy segmentation filter.
-  //
-  //  \index{itk::VoronoiSegmentationImageFilter!SetInput()}
-  //  \index{itk::VoronoiSegmentationImageFilter!TakeAPrior()}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  voronoisegmenter->SetInput(reader->GetOutput());
-  voronoisegmenter->TakeAPrior(fuzzysegmenter->GetOutput());
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The tolerance levels for testing the mean and standard deviation are set
-  //  with the methods \code{SetMeanPercentError()} and
-  //  \code{SetSTDPercentError()}. Note that the
-  //  fuzzy segmentation filter uses \emph{variance} as parameter while
-  //  the Voronoi segmentation filter uses the tolerance of the
-  //  \emph{standard deviation} as a parameter. For more details on how these
-  //  parameters should be selected, please see \cite{Imielinska2000b}.
-  //
-  //  \index{itk::VoronoiSegmentationImageFilter!SetMeanPercentError()}
-  //  \index{itk::VoronoiSegmentationImageFilter!SetSTDPercentError()}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  voronoisegmenter->SetMeanPercentError(meanTolerance);
-  voronoisegmenter->SetSTDPercentError(stdTolerance);
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The \emph{resolution} of the Voronoi diagram classification can be
-  //  chosen with the method \code{SetMinRegion()}.
-  //
-  //  \index{itk::VoronoiSegmentationImageFilter!SetMinRegion()}
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  voronoisegmenter->SetMinRegion(5);
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The execution of the Voronoi segmentation filter is triggered with the
-  //  \code{Update()} method.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  voronoisegmenter->Update();
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  The output of the Voronoi diagram classification is an image mask with
-  //  zeros everywhere and ones inside the segmented object. This image will
-  //  appear black on many image viewers since they do not usually stretch
-  //  the gray levels. Here, we add a \doxygen{itk}{RescaleIntensityImageFilter}
-  //  in order to expand the dynamic range to more typical values.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  typedef itk::RescaleIntensityImageFilter<OutputImageType, OutputImageType>
-  ScalerFilterType;
-  ScalerFilterType::Pointer scaler = ScalerFilterType::New();
-
-  scaler->SetOutputMinimum(0);
-  scaler->SetOutputMaximum(255);
-
-  scaler->SetInput(voronoisegmenter->GetOutput());
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  // The output of the rescaler is passed to the writer. The invocation
-  // of the \code{Update()} method on the writer triggers the execution of
-  // the pipeline.
-  //
-  //  Software Guide : EndLatex
-
-  // Software Guide : BeginCodeSnippet
-  writer->SetInput(scaler->GetOutput());
-  writer->Update();
-  // Software Guide : EndCodeSnippet
-
-  //  Software Guide : BeginLatex
-  //
-  //  We execute this program on the image \code{QB\_Suburb.png} available
-  //  in the directory \code{Examples/Data}. The following parameters are
-  //  passed to the command line:
-  //
-  //  \small
-  //  \begin{verbatim}
-  //HybridSegmentationFuzzyVoronoi QB_Suburb.png Output.png
-  //                                           111 38 75 20 0.5 2.0
-  //  \end{verbatim}
-  //  \normalsize
-  //
-  //  $(111, 38)$ specifies the index position of a seed point in the image,
-  //  while $75$ and $20$ are the estimated mean and standard deviation,
-  //  respectively, of the object to be segmented.  Finally, $0.5$ and $2.0$
-  //  are the tolerance for the mean and standard deviation, respectively.
-  //  Figure~\ref{fig:HybridSegmentationFuzzyVoronoiOutput} shows the input
-  //  image and the binary mask resulting from the segmentation.
-  //
-  //  Note that in order to successfully segment other images, these
-  //  parameters have to be adjusted to reflect the data.
-  //
-  //  Software Guide : EndLatex
-
-  return EXIT_SUCCESS;
-}