diff --git a/Modules/Applications/AppHyperspectral/app/otbSpectralAngleClassification.cxx b/Modules/Applications/AppHyperspectral/app/otbSpectralAngleClassification.cxx index 98aeb935cb94b9dc4ba8fdef5c830ae5d883899a..5e4eec3dd663715220450f7e0eb3e8679e34d9d6 100644 --- a/Modules/Applications/AppHyperspectral/app/otbSpectralAngleClassification.cxx +++ b/Modules/Applications/AppHyperspectral/app/otbSpectralAngleClassification.cxx @@ -192,21 +192,11 @@ private: : std::numeric_limits<ValueType>::max(); auto bv = GetParameterInt("bv"); - // This lambda return the index of the minimum value in a pixel, values above threshold are not classified. + // This lambda return the index of the minimum value in a pixel, values above threshold are classified as background values. auto minIndexLambda = [threshold, bv](PixelType const & pixel) { - auto min = threshold; - int res = bv; - - for (unsigned int i = 0; i < pixel.Size(); i++) - { - if (pixel[i] < min) - { - min = pixel[i]; - res = i+1; - } - } - return res; + auto minElem = std::min_element(&pixel[0], &pixel[pixel.Size()]); + return static_cast<int>(*minElem < threshold ? std::distance(&pixel[0], minElem) + 1 : bv); }; auto classificationFilter = NewFunctorFilter(minIndexLambda); diff --git a/Modules/Filtering/ImageManipulation/include/otbBinarySpectralAngleFunctor.h b/Modules/Filtering/ImageManipulation/include/otbBinarySpectralAngleFunctor.h index 59d0bf2f3c965bc9469c3d09e3e8e7a393db88e3..34a476efea28d092a5f64815593a0756c0879321 100644 --- a/Modules/Filtering/ImageManipulation/include/otbBinarySpectralAngleFunctor.h +++ b/Modules/Filtering/ImageManipulation/include/otbBinarySpectralAngleFunctor.h @@ -49,12 +49,13 @@ public: virtual ~BinarySpectralAngleFunctor() = default; // Binary operator - inline TOutputValue operator()(const TInput1& in1, const TInput2& in2) const + TOutputValue operator()(const TInput1& in1, const TInput2& in2) const { // Compute norms. auto in1Norm = 0; auto in2Norm = 0; - for (unsigned int i = 0; i < std::min(in1.Size(), in2.Size()); ++i) + auto nbIter = std::min(in1.Size(), in2.Size()); + for (unsigned int i = 0; i < nbIter; ++i) { in1Norm += in1[i] * in1[i]; in2Norm += in2[i] * in2[i]; diff --git a/Modules/Filtering/ImageManipulation/include/otbSpectralAngleFunctor.h b/Modules/Filtering/ImageManipulation/include/otbSpectralAngleFunctor.h index 3670a8c84040df812a34278b490043b9f3f1a960..8b6c1ab13264aaa6621c335aaea50cc183276da4 100644 --- a/Modules/Filtering/ImageManipulation/include/otbSpectralAngleFunctor.h +++ b/Modules/Filtering/ImageManipulation/include/otbSpectralAngleFunctor.h @@ -41,12 +41,7 @@ template <class TInput, class TReference, class TOutput> TOutput ComputeSpectralAngle(TInput const & input, typename TInput ::ValueType const & inputNorm, TReference const & reference, typename TReference::ValueType refNorm) { - // Compute scalar product. - double scalarProduct = 0.0; - for (unsigned int i = 0; i < std::min(input.Size(), reference.Size()); ++i) - { - scalarProduct += input[i] * reference[i]; - } + double scalarProduct = std::inner_product(&input[0], &input[input.Size()], &reference[0], 0. ); auto normProd = inputNorm * refNorm; if ((normProd == 0.0) || (scalarProduct / normProd > 1)) { @@ -75,7 +70,7 @@ public: m_ReferencePixel.Fill(1); } - virtual ~SpectralAngleFunctor() = default; + ~SpectralAngleFunctor() = default; // Binary operator inline TOutputValue operator()(TInput const & inPix) const @@ -114,8 +109,7 @@ public: // Binary operator inline TOutput operator()(const TInput& inPix) const { - TOutput res; - res.SetSize(m_ReferencePixels.size()); + TOutput res(m_ReferencePixels.size()); auto inputNorm = inPix.GetNorm(); @@ -133,18 +127,18 @@ public: return m_ReferencePixels.size(); } - void SetReferencePixels(std::vector<TReference> const & ref) + void SetReferencePixels(std::vector<TReference> ref) { - m_ReferencePixels = ref; + m_ReferencePixels = std::move(ref); m_ReferenceNorm.clear(); // Precompute the norm of reference pixels - for (auto const & pix : ref) + for (auto const & pixel : m_ReferencePixels) { - m_ReferenceNorm.push_back(pix.GetNorm()); + m_ReferenceNorm.push_back(pixel.GetNorm()); } } - std::vector<TReference> GetReferencePixels() const + std::vector<TReference> const & GetReferencePixels() const { return m_ReferencePixels; } diff --git a/Modules/Filtering/ImageManipulation/include/otbSpectralInformationDivergenceFunctor.h b/Modules/Filtering/ImageManipulation/include/otbSpectralInformationDivergenceFunctor.h index 6236a0adeda3dbb720468dd847c6444a7bcca5f2..b89f84a8e59b3eb9fe9462f63c7435a31be6d90c 100644 --- a/Modules/Filtering/ImageManipulation/include/otbSpectralInformationDivergenceFunctor.h +++ b/Modules/Filtering/ImageManipulation/include/otbSpectralInformationDivergenceFunctor.h @@ -89,7 +89,7 @@ private: // Input pixel should be non negative (e.g. reflectance, radiance) if (input[i] <= 0) { - throw std::domain_error("Input pixel of the spectral information divergence algorithm should be strictly positive."); + throw std::runtime_error("Input pixels of the spectral information divergence algorithm should be strictly positive."); } sum += input[i]; } @@ -107,7 +107,8 @@ private: OutputValueType sid = 0.0; for (unsigned int i = 0; i < p.Size(); i++) { - sid += p[i] * std::log(p[i]/q[i]) + q[i] * std::log(q[i]/p[i]); + // Compute SID : p[i] * std::log(p[i]/q[i]) + q[i] * std::log(q[i]/p[i]); + sid += (p[i] - q[i]) * std::log(p[i]/q[i]); } return sid; }