diff --git a/Code/Fuzzy/otbDSFusionOfClassifiersImageFilter.txx b/Code/Fuzzy/otbDSFusionOfClassifiersImageFilter.txx index a22141b96de9aaa0cde5ff11628a8131ab3efd47..7cb01fe8d75541fa260c54c4d4e459cf4b177e21 100644 --- a/Code/Fuzzy/otbDSFusionOfClassifiersImageFilter.txx +++ b/Code/Fuzzy/otbDSFusionOfClassifiersImageFilter.txx @@ -154,6 +154,7 @@ DSFusionOfClassifiersImageFilter<TInputImage, TOutputImage, TMaskImage> MassType KClk, mLabelSetClkNew, mLabelSetClkNew_, mUniverseClkNew; LabelMassMapType mapJointMassesStepI, mapJointMassesStepI_, mapJointMassesUniverseStepI; + LabelMassMapType mapOfLabelsWithMassOne, mapOfLabelsWithMassZero; // Extracting the masses m(Ai), m(Ai_) and m(OMEGA) for each of the K (= m_NumberOfClassifiers) classifiers // and grouping them according to the {Ai} singletons @@ -177,36 +178,91 @@ DSFusionOfClassifiersImageFilter<TInputImage, TOutputImage, TMaskImage> std::cout << std::endl; */ - if (mapJointMassesStepI.count(classLabelk) == 0) + if ((mLabelSetClk > 0) && (mLabelSetClk < 1.0)) { - // If the label {Ai} is NOT present in vectorPixelValue yet: initializations of the three DS combined MOBs - mLabelSetClkNew = mLabelSetClk; - mLabelSetClkNew_ = mLabelSetClk_; - mUniverseClkNew = mUniverseClk; - } + if (mapJointMassesStepI.count(classLabelk) == 0) + { + // If the label {Ai} is NOT present in vectorPixelValue yet: initializations of the three DS combined MOBs + mLabelSetClkNew = mLabelSetClk; + mLabelSetClkNew_ = mLabelSetClk_; + mUniverseClkNew = mUniverseClk; + } + else + { + // If the label {Ai} is already present in vectorPixelValue: recursive DS combination of the three MOBs + mLabelSetClkprev = mapJointMassesStepI[classLabelk]; + mLabelSetClkprev_ = mapJointMassesStepI_[classLabelk]; + mUniverseClkprev = mapJointMassesUniverseStepI[classLabelk]; + + KClk = 1.0 / (1 - mLabelSetClkprev * mLabelSetClk_ - mLabelSetClkprev_ * mLabelSetClk); + mLabelSetClkNew = KClk * (mLabelSetClkprev * (mLabelSetClk + mUniverseClk) + mUniverseClkprev * mLabelSetClk); + mLabelSetClkNew_ = KClk * (mLabelSetClkprev_ * (mLabelSetClk_ + mUniverseClk) + mUniverseClkprev * mLabelSetClk_); + mUniverseClkNew = KClk * mUniverseClkprev * mUniverseClk; + } + + mapJointMassesStepI[classLabelk] = mLabelSetClkNew; + mapJointMassesStepI_[classLabelk] = mLabelSetClkNew_; + mapJointMassesUniverseStepI[classLabelk] = mUniverseClkNew; + }// END if ((mLabelSetClk > 0) && (mLabelSetClk < 1.0)) else { - // If the label {Ai} is already present in vectorPixelValue: recursive DS combination of the three MOBs - mLabelSetClkprev = mapJointMassesStepI[classLabelk]; - mLabelSetClkprev_ = mapJointMassesStepI_[classLabelk]; - mUniverseClkprev = mapJointMassesUniverseStepI[classLabelk]; - - KClk = 1.0 / (1 - mLabelSetClkprev * mLabelSetClk_ - mLabelSetClkprev_ * mLabelSetClk); - mLabelSetClkNew = KClk * (mLabelSetClkprev * (mLabelSetClk + mUniverseClk) + mUniverseClkprev * mLabelSetClk); - mLabelSetClkNew_ = KClk * (mLabelSetClkprev_ * (mLabelSetClk_ + mUniverseClk) + mUniverseClkprev * mLabelSetClk_); - mUniverseClkNew = KClk * mUniverseClkprev * mUniverseClk; - } + if (mLabelSetClk == 1.0) + { + mapOfLabelsWithMassOne[classLabelk] = mLabelSetClk; + } + else + { + if (mLabelSetClk == 0) + { + mapOfLabelsWithMassZero[classLabelk] = 1.0; + } + } + } // END if ((mLabelSetClk == 0) || (mLabelSetClk == 1.0)) - mapJointMassesStepI[classLabelk] = mLabelSetClkNew; - mapJointMassesStepI_[classLabelk] = mLabelSetClkNew_; - mapJointMassesUniverseStepI[classLabelk] = mUniverseClkNew; } // END if (classLabelk != m_LabelForNoDataPixels) } + + /* ************************************************************************************************ */ + /* ************************************************************************************************ */ + // If at least one classifier returns a label with a mass of belief equal to 1.0, then 2 cases + // should be considered: + // + // -If this label is unique, then this label is considered as the truth, and the output pixel is set + // to this label value + // + // -If this label is NOT unique, then the corresponding classifiers are in conflict and the output + // pixel is set to the m_LabelForUndecidedPixels value + + typename LabelMassMapType::iterator itMapMOBClk; + + if (mapOfLabelsWithMassOne.size() > 0) + { + if (mapOfLabelsWithMassOne.size() == 1) + { + itMapMOBClk = mapOfLabelsWithMassOne.begin(); + classLabelk = itMapMOBClk->first; + return classLabelk; + } + else + { + return m_LabelForUndecidedPixels; + } + } + /* ************************************************************************************************ */ /* ************************************************************************************************ */ - // If ALL the K (= m_NumberOfClassifiers) classifiers of the pixel vectorPixelValue - // are equal to this->m_LabelForNoDataPixels, they keep their m_LabelForNoDataPixels value + // If ALL the K (= m_NumberOfClassifiers) classifiers of the pixel vectorPixelValue have + // masses of belief equal to 0, then the output pixel is set to the m_LabelForUndecidedPixels value + if (mapOfLabelsWithMassZero.size() == m_NumberOfClassifiers) + { + return m_LabelForUndecidedPixels; + } + + /* ************************************************************************************************ */ + /* ************************************************************************************************ */ + // If ALL the K (= m_NumberOfClassifiers) classifiers of the pixel vectorPixelValue are + // equal to m_LabelForNoDataPixels, then the output pixel is set to the m_LabelForNoDataPixels value if (mapJointMassesStepI.size() == 0) { return m_LabelForNoDataPixels; @@ -223,7 +279,6 @@ DSFusionOfClassifiersImageFilter<TInputImage, TOutputImage, TMaskImage> // Calculation of the four constants A, B, C and K MassType A = 0, B = 1, C = 1, K; - typename LabelMassMapType::iterator itMapMOBClk; for (itMapMOBClk = mapJointMassesStepI.begin(); itMapMOBClk != mapJointMassesStepI.end(); ++itMapMOBClk) { classLabelk = itMapMOBClk->first;