diff --git a/Documentation/Cookbook/rst/recipes/pbclassif.rst b/Documentation/Cookbook/rst/recipes/pbclassif.rst index 5ff4d7764344ea6966268ce3162461c07746af4d..dbeeadd8abb8b9b775db2ffb3f65b834fbdea7b0 100644 --- a/Documentation/Cookbook/rst/recipes/pbclassif.rst +++ b/Documentation/Cookbook/rst/recipes/pbclassif.rst @@ -895,7 +895,7 @@ Two applications are available for training: - `TrainImagesRegression` can be used to train a classifier from multiple pairs of predictor images and label images. - There is two ways to use this application: + There are two ways to use this application: It is possible to provide for each input image a vector data file with geometries corresponding to the input locations that will be used for training. This is achieved by using the `io.vd` parameter. diff --git a/Modules/Applications/AppClassification/app/otbImageRegression.cxx b/Modules/Applications/AppClassification/app/otbImageRegression.cxx index f1892417da6d1e853d3cb6412f890d8c7ec7ade6..15f4e7b4d0c664b0bb6a054e76184d690fdf5308 100644 --- a/Modules/Applications/AppClassification/app/otbImageRegression.cxx +++ b/Modules/Applications/AppClassification/app/otbImageRegression.cxx @@ -44,16 +44,6 @@ class AffineFunctor public: typedef double InternalType; - // constructor - AffineFunctor() : m_A(1.0), m_B(0.0) - { - } - - // destructor - virtual ~AffineFunctor() - { - } - void SetA(InternalType a) { m_A = a; @@ -70,8 +60,8 @@ public: } private: - InternalType m_A; - InternalType m_B; + InternalType m_A = 1.0; + InternalType m_B = 0.0; }; }