diff --git a/Modules/Applications/AppClassification/include/otbVectorPrediction.h b/Modules/Applications/AppClassification/include/otbVectorPrediction.h index 89f257f46bcc167897aece2a6e860b856825c0ae..7390c407f8ebda6bd9f55fce5cc9b0b6b4e928fa 100644 --- a/Modules/Applications/AppClassification/include/otbVectorPrediction.h +++ b/Modules/Applications/AppClassification/include/otbVectorPrediction.h @@ -98,7 +98,7 @@ private: /** Method returning whether the confidence map should be computed, depending on the regression mode and input parameters */ bool shouldComputeConfidenceMap() const; - /** Method returning the input list sample from the input layer */ + /** Method returning the input list sample from the input DataSource */ typename ListSampleType::Pointer ReadInputListSample(ogr::DataSource::Pointer source); /** Normalize a list sample using the statistic file given */ diff --git a/Modules/Applications/AppClassification/include/otbVectorPrediction.hxx b/Modules/Applications/AppClassification/include/otbVectorPrediction.hxx index f62f08982ca035dc087581f2132329cd570e7593..0cc24a8befd8cc0855262c22a0e9ea9e002d1208 100644 --- a/Modules/Applications/AppClassification/include/otbVectorPrediction.hxx +++ b/Modules/Applications/AppClassification/include/otbVectorPrediction.hxx @@ -78,7 +78,7 @@ typename VectorPrediction<RegressionMode>::ListSampleType::Pointer VectorPredict auto layer = source->GetLayer(0); typename ListSampleType::Pointer input = ListSampleType::New(); - const unsigned int nbFeatures = GetSelectedItems("feat").size(); + const auto nbFeatures = GetSelectedItems("feat").size(); input->SetMeasurementVectorSize(nbFeatures); ogr::Feature feature = layer.ogr().GetNextFeature();