Newer
Older
#ifndef SOMModel_h
#define SOMModel_h
//#include "DimensionalityReductionModel.h"
#include "otbSOMMap.h"
#include "otbSOM.h"
#include "itkEuclideanDistanceMetric.h" // the distance function
#include "otbCzihoSOMLearningBehaviorFunctor.h"
#include "otbCzihoSOMNeighborhoodBehaviorFunctor.h"
#include "otbMachineLearningModelTraits.h"
#include "otbMachineLearningModel.h"
namespace otb
{
template <class TInputValue, unsigned int MapDimension>
class ITK_EXPORT SOMModel: public MachineLearningModel<itk::VariableLengthVector< TInputValue> , itk::VariableLengthVector< TInputValue>>
{
public:
typedef SOMModel Self;
typedef MachineLearningModel<itk::VariableLengthVector< TInputValue> , itk::VariableLengthVector< TInputValue>> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef typename Superclass::InputValueType InputValueType;
typedef typename Superclass::InputSampleType InputSampleType;
typedef typename Superclass::InputListSampleType InputListSampleType;
typedef typename InputListSampleType::Pointer ListSamplePointerType;
typedef typename Superclass::TargetValueType TargetValueType;
typedef typename Superclass::TargetSampleType TargetSampleType;
typedef typename Superclass::TargetListSampleType TargetListSampleType;
/// Confidence map related typedefs
typedef typename Superclass::ConfidenceValueType ConfidenceValueType;
typedef typename Superclass::ConfidenceSampleType ConfidenceSampleType;
typedef typename Superclass::ConfidenceListSampleType ConfidenceListSampleType;
typedef SOMMap<itk::VariableLengthVector<TInputValue>,itk::Statistics::EuclideanDistanceMetric<itk::VariableLengthVector<TInputValue>>, MapDimension> MapType;
typedef typename MapType::SizeType SizeType;
typedef typename MapType::SpacingType SpacingType;
typedef otb::SOM<InputListSampleType, MapType> EstimatorType;
typedef Functor::CzihoSOMLearningBehaviorFunctor SOMLearningBehaviorFunctorType;
typedef Functor::CzihoSOMNeighborhoodBehaviorFunctor SOMNeighborhoodBehaviorFunctorType;
itkNewMacro(Self);
itkTypeMacro(SOMModel, DimensionalityReductionModel);
/** Accessors */
itkSetMacro(NumberOfIterations, unsigned int);
itkGetMacro(NumberOfIterations, unsigned int);
itkSetMacro(BetaInit, double);
itkGetMacro(BetaInit, double);
itkSetMacro(BetaEnd, double);
itkGetMacro(BetaEnd, double);
itkSetMacro(MinWeight, InputValueType);
itkGetMacro(MinWeight, InputValueType);
itkSetMacro(MaxWeight, InputValueType);
itkGetMacro(MaxWeight, InputValueType);
itkSetMacro(MapSize, SizeType);
itkGetMacro(MapSize, SizeType);
itkSetMacro(NeighborhoodSizeInit, SizeType);
itkGetMacro(NeighborhoodSizeInit, SizeType);
itkSetMacro(RandomInit, bool);
itkGetMacro(RandomInit, bool);
itkSetMacro(Seed, unsigned int);
itkGetMacro(Seed, unsigned int);
itkGetObjectMacro(ListSample, InputListSampleType);
itkSetObjectMacro(ListSample, InputListSampleType);
bool CanReadFile(const std::string & filename);
bool CanWriteFile(const std::string & filename);
void Save(const std::string & filename, const std::string & name="") ;
void Load(const std::string & filename, const std::string & name="") ;
void Train() ITK_OVERRIDE;
//void Dimensionality_reduction() {}; // Dimensionality reduction is done by DoPredict
Cédric Traizet
committed
//unsigned int GetDimension() { return MapType::ImageDimension;};
protected:
SOMModel();
~SOMModel() ITK_OVERRIDE;
private:
typename MapType::Pointer m_SOMMap;
virtual TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType * quality = ITK_NULLPTR) const;
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/** Map Parameters used for training */
SizeType m_MapSize;
/** Number of iterations */
unsigned int m_NumberOfIterations;
/** Initial learning coefficient */
double m_BetaInit;
/** Final learning coefficient */
double m_BetaEnd;
/** Initial neighborhood size */
SizeType m_NeighborhoodSizeInit;
/** Minimum initial neuron weights */
InputValueType m_MinWeight;
/** Maximum initial neuron weights */
InputValueType m_MaxWeight;
/** Random initialization bool */
bool m_RandomInit;
/** Seed for random initialization */
unsigned int m_Seed;
/** The input list sample */
ListSamplePointerType m_ListSample;
/** Behavior of the Learning weightening (link to the beta coefficient) */
SOMLearningBehaviorFunctorType m_BetaFunctor;
/** Behavior of the Neighborhood extent */
SOMNeighborhoodBehaviorFunctorType m_NeighborhoodSizeFunctor;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "SOMModel.txx"
#endif
#endif