Skip to content
Snippets Groups Projects
AutoencoderModel.h 4.16 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef AutoencoderModel_h
    #define AutoencoderModel_h
    
    
    #include "otbMachineLearningModelTraits.h"
    #include "otbMachineLearningModel.h"
    
    #include <shark/Algorithms/StoppingCriteria/AbstractStoppingCriterion.h>
    
    
    namespace otb
    {
    template <class TInputValue, class AutoencoderType>
    
    class ITK_EXPORT AutoencoderModel: public  MachineLearningModel<itk::VariableLengthVector< TInputValue> , itk::VariableLengthVector< TInputValue>>   
    
    	typedef MachineLearningModel<itk::VariableLengthVector< TInputValue> , itk::VariableLengthVector< TInputValue>> Superclass;
    
    	typedef itk::SmartPointer<Self> Pointer;
    	typedef itk::SmartPointer<const Self> ConstPointer;
    
    
    	typedef typename Superclass::InputValueType 			InputValueType;
    	typedef typename Superclass::InputSampleType 			InputSampleType;
    	typedef typename Superclass::InputListSampleType 		InputListSampleType;
    	typedef typename InputListSampleType::Pointer 			ListSamplePointerType;
    	typedef typename Superclass::TargetValueType 			TargetValueType;
    	typedef typename Superclass::TargetSampleType 			TargetSampleType;
    	typedef typename Superclass::TargetListSampleType 		TargetListSampleType;
    
    	/// Confidence map related typedefs
    
    	typedef typename Superclass::ConfidenceValueType  				ConfidenceValueType;
    	typedef typename Superclass::ConfidenceSampleType 				ConfidenceSampleType;
    	typedef typename Superclass::ConfidenceListSampleType      		ConfidenceListSampleType;
    
    
    
    	itkTypeMacro(AutoencoderModel, DimensionalityReductionModel);
    
    	//unsigned int GetDimension() {return m_NumberOfHiddenNeurons[m_net.size()-1];};  // Override the Dimensionality Reduction model method, it is used in the dimensionality reduction filter to set the output image size
    
    	itkGetMacro(NumberOfHiddenNeurons,itk::Array<unsigned int>);
    	itkSetMacro(NumberOfHiddenNeurons,itk::Array<unsigned int>);
    
    
    	itkGetMacro(NumberOfIterations,unsigned int);
    	itkSetMacro(NumberOfIterations,unsigned int);
    
    	itkGetMacro(Regularization,itk::Array<double>);
    	itkSetMacro(Regularization,itk::Array<double>);
    
    	itkGetMacro(Noise,itk::Array<double>);
    	itkSetMacro(Noise,itk::Array<double>);
    
    	itkGetMacro(Rho,itk::Array<double>);
    	itkSetMacro(Rho,itk::Array<double>);
    
    	itkGetMacro(Beta,itk::Array<double>);
    	itkSetMacro(Beta,itk::Array<double>);
    
    	bool CanReadFile(const std::string & filename);
    	bool CanWriteFile(const std::string & filename);
    
    	void Save(const std::string & filename, const std::string & name="")  ITK_OVERRIDE;
    	void Load(const std::string & filename, const std::string & name="")  ITK_OVERRIDE;
    
    	void Train() ITK_OVERRIDE;
    
    	void TrainOneLayer(shark::AbstractStoppingCriterion<T> & criterion, unsigned int,double, double, shark::Data<shark::RealVector> &, std::ostream&);
    
    	void TrainOneSparseLayer(shark::AbstractStoppingCriterion<T> & criterion, unsigned int,double, double,double, shark::Data<shark::RealVector> &, std::ostream&);
    
    Cédric Traizet's avatar
    Cédric Traizet committed
    	AutoencoderModel();	
    
    	virtual TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType * quality = ITK_NULLPTR) const;
    
    	virtual void DoPredictBatch(const InputListSampleType *, const unsigned int & startIndex, const unsigned int & size, TargetListSampleType *, ConfidenceListSampleType * quality = ITK_NULLPTR) const;
    
    	/** Network attributes */
    
    	
    	itk::Array<unsigned int> m_NumberOfHiddenNeurons;
    
    	/** Training parameters */
    
    	unsigned int m_NumberOfIterations; // stop the training after a fixed number of iterations
    	double m_Epsilon; // Stops the training when the training error seems to converge
    
    	itk::Array<double> m_Regularization;  // L2 Regularization parameter
    	itk::Array<double> m_Noise;  // probability for an input to be set to 0 (denosing autoencoder)
    	itk::Array<double> m_Rho; // Sparsity parameter
    	itk::Array<double> m_Beta; // Sparsity regularization parameter
    
    	
    	bool m_WriteLearningCurve; // Flag for writting the learning curve into a txt file
    	
    
    };
    } // end namespace otb
    
    
    #ifndef OTB_MANUAL_INSTANTIATION
    #include "AutoencoderModel.txx"
    #endif
    
    
    #endif