Newer
Older
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbDimensionalityReductionTrainAutoencoder_txx
#define otbDimensionalityReductionTrainAutoencoder_txx
Cédric Traizet
committed
#include "otbTrainDimensionalityReductionApplicationBase.h"
#include "otbAutoencoderModel.h"
Cédric Traizet
committed
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void
TrainDimensionalityReductionApplicationBase<TInputValue,TOutputValue>
Cédric Traizet
committed
::InitAutoencoderParams()
{
AddChoice("algorithm.autoencoder", "Shark Autoencoder");
SetParameterDescription("algorithm.autoencoder",
Cédric Traizet
committed
"This group of parameters allows setting Shark autoencoder parameters. "
);
Cédric Traizet
committed
//Number Of Iterations
AddParameter(ParameterType_Int, "algorithm.autoencoder.nbiter",
Cédric Traizet
committed
"Maximum number of iterations during training");
SetParameterInt("algorithm.autoencoder.nbiter",100, false);
Cédric Traizet
committed
SetParameterDescription(
"algorithm.autoencoder.nbiter",
Cédric Traizet
committed
"The maximum number of iterations used during training.");
AddParameter(ParameterType_Int, "algorithm.autoencoder.nbiterfinetuning",
"Maximum number of iterations during training");
SetParameterInt("algorithm.autoencoder.nbiterfinetuning",0, false);
"algorithm.autoencoder.nbiterfinetuning",
"The maximum number of iterations used during fine tuning of the whole network.");
AddParameter(ParameterType_Float, "algorithm.autoencoder.epsilon",
SetParameterFloat("algorithm.autoencoder.epsilon",0, false);
Cédric Traizet
committed
SetParameterDescription(
"algorithm.autoencoder.epsilon",
AddParameter(ParameterType_Float, "algorithm.autoencoder.initfactor",
SetParameterFloat("algorithm.autoencoder.initfactor",1, false);
SetParameterDescription(
"algorithm.autoencoder.initfactor", "Parameter that control the weight initialization of the autoencoder");
Cédric Traizet
committed
//Number Of Hidden Neurons
AddParameter(ParameterType_StringList, "algorithm.autoencoder.nbneuron", "Size");
Cédric Traizet
committed
SetParameterDescription(
"algorithm.autoencoder.nbneuron",
"The number of neurons in each hidden layer.");
AddParameter(ParameterType_StringList, "algorithm.autoencoder.regularization", "Strength of the regularization");
SetParameterDescription("algorithm.autoencoder.regularization",
"Strength of the L2 regularization used during training");
Cédric Traizet
committed
//Noise strength
AddParameter(ParameterType_StringList, "algorithm.autoencoder.noise", "Strength of the noise");
SetParameterDescription("algorithm.autoencoder.noise",
"Strength of the noise");
// Sparsity parameter
AddParameter(ParameterType_StringList, "algorithm.autoencoder.rho", "Sparsity parameter");
SetParameterDescription("algorithm.autoencoder.rho",
"Sparsity parameter");
// Sparsity regularization strength
AddParameter(ParameterType_StringList, "algorithm.autoencoder.beta", "Sparsity regularization strength");
SetParameterDescription("algorithm.autoencoder.beta",
"Sparsity regularization strength");
AddParameter(ParameterType_OutputFilename, "algorithm.autoencoder.learningcurve", "Learning curve");
SetParameterDescription("algorithm.autoencoder.learningcurve", "Learning error values");
MandatoryOff("algorithm.autoencoder.learningcurve");
}
template <class TInputValue, class TOutputValue>
void
TrainDimensionalityReductionApplicationBase<TInputValue,TOutputValue>
::BeforeTrainAutoencoder(typename ListSampleType::Pointer trainingListSample,
std::string modelPath)
{
typedef shark::LogisticNeuron NeuronType;
typedef otb::AutoencoderModel<InputValueType, NeuronType> AutoencoderModelType;
TrainAutoencoder<AutoencoderModelType>(trainingListSample,modelPath);
Cédric Traizet
committed
}
Cédric Traizet
committed
template <class TInputValue, class TOutputValue>
void TrainDimensionalityReductionApplicationBase<TInputValue,TOutputValue>::TrainAutoencoder(typename ListSampleType::Pointer trainingListSample,std::string modelPath)
Cédric Traizet
committed
{
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
typename autoencoderchoice::Pointer dimredTrainer = autoencoderchoice::New();
itk::Array<unsigned int> nb_neuron;
itk::Array<float> noise;
itk::Array<float> regularization;
itk::Array<float> rho;
itk::Array<float> beta;
std::vector<std::basic_string<char>> s_nbneuron= GetParameterStringList("algorithm.autoencoder.nbneuron");
std::vector<std::basic_string<char>> s_noise= GetParameterStringList("algorithm.autoencoder.noise");
std::vector<std::basic_string<char>> s_regularization= GetParameterStringList("algorithm.autoencoder.regularization");
std::vector<std::basic_string<char>> s_rho= GetParameterStringList("algorithm.autoencoder.rho");
std::vector<std::basic_string<char>> s_beta= GetParameterStringList("algorithm.autoencoder.beta");
nb_neuron.SetSize(s_nbneuron.size());
noise.SetSize(s_nbneuron.size());
regularization.SetSize(s_nbneuron.size());
rho.SetSize(s_nbneuron.size());
beta.SetSize(s_nbneuron.size());
for (unsigned int i=0; i<s_nbneuron.size(); i++)
{
nb_neuron[i]=std::stoi(s_nbneuron[i]);
noise[i]=std::stof(s_noise[i]);
regularization[i]=std::stof(s_regularization[i]);
rho[i]=std::stof(s_rho[i]);
beta[i]=std::stof(s_beta[i]);
}
dimredTrainer->SetNumberOfHiddenNeurons(nb_neuron);
dimredTrainer->SetNumberOfIterations(GetParameterInt("algorithm.autoencoder.nbiter"));
dimredTrainer->SetNumberOfIterationsFineTuning(GetParameterInt("algorithm.autoencoder.nbiterfinetuning"));
dimredTrainer->SetEpsilon(GetParameterFloat("algorithm.autoencoder.epsilon"));
dimredTrainer->SetInitFactor(GetParameterFloat("algorithm.autoencoder.initfactor"));
dimredTrainer->SetRegularization(regularization);
dimredTrainer->SetNoise(noise);
dimredTrainer->SetRho(rho);
dimredTrainer->SetBeta(beta);
dimredTrainer->SetWriteWeights(true);
if (HasValue("algorithm.autoencoder.learningcurve") &&
IsParameterEnabled("algorithm.autoencoder.learningcurve"))
{
dimredTrainer->SetWriteLearningCurve(true);
dimredTrainer->SetLearningCurveFileName(GetParameterString("algorithm.autoencoder.learningcurve"));
}
dimredTrainer->SetInputListSample(trainingListSample);
dimredTrainer->Train();
dimredTrainer->Save(modelPath);
Cédric Traizet
committed
}
Cédric Traizet
committed
} //end namespace wrapper
} //end namespace otb
#endif