Skip to content
Snippets Groups Projects
Commit 2d0c7c01 authored by Antoine Regimbeau's avatar Antoine Regimbeau
Browse files

Got the file from doc sprint, in order to work properly on the app

parent de9c2717
No related branches found
No related tags found
No related merge requests found
......@@ -37,9 +37,23 @@ namespace Wrapper
SetParameterDescription("classifier.libsvm", "This group of parameters allows setting SVM classifier parameters.");
AddParameter(ParameterType_Choice, "classifier.libsvm.k", "SVM Kernel Type");
AddChoice("classifier.libsvm.k.linear", "Linear");
SetParameterDescription("classifier.libsvm.k.linear",
"Linear Kernel, no mapping is done, this is the fastest option.");
AddChoice("classifier.libsvm.k.rbf", "Gaussian radial basis function");
SetParameterDescription("classifier.libsvm.k.rbf",
"This kernel is a good choice in most of the case. It is "
"an exponential function of the euclidian distance between "
"the vectors.");
AddChoice("classifier.libsvm.k.poly", "Polynomial");
SetParameterDescription("classifier.libsvm.k.poly",
"Polynomial Kernel, the mapping is a polynomial function.");
AddChoice("classifier.libsvm.k.sigmoid", "Sigmoid");
SetParameterDescription("classifier.libsvm.k.sigmoid",
"The kernel is a hyperbolic tangente function of the vectors.");
SetParameterString("classifier.libsvm.k", "linear", false);
SetParameterDescription("classifier.libsvm.k", "SVM Kernel Type.");
AddParameter(ParameterType_Choice, "classifier.libsvm.m", "SVM Model Type");
......@@ -47,21 +61,44 @@ namespace Wrapper
if (this->m_RegressionFlag)
{
AddChoice("classifier.libsvm.m.epssvr", "Epsilon Support Vector Regression");
SetParameterDescription("classifier.libsvm.m.epssvr",
"The distance between feature vectors from the training set and the "
"fitting hyper-plane must be less than Epsilon. For outliers the penalty "
"multiplier C is used ");
AddChoice("classifier.libsvm.m.nusvr", "Nu Support Vector Regression");
SetParameterString("classifier.libsvm.m", "epssvr", false);
SetParameterDescription("classifier.libsvm.m.nusvr",
"Same as the epsilon regression except that this time the bounded "
"parameter nu is used instead of epsilon");
}
else
{
AddChoice("classifier.libsvm.m.csvc", "C support vector classification");
SetParameterDescription("classifier.libsvm.m.csvc",
"This formulation allows imperfect separation of classes. The penalty "
"is set through the cost parameter C.");
AddChoice("classifier.libsvm.m.nusvc", "Nu support vector classification");
SetParameterDescription("classifier.libsvm.m.nusvc",
"This formulation allows imperfect separation of classes. The penalty "
"is set through the cost parameter Nu. As compared to C, Nu is harder "
"to optimize, and may not be as fast.");
AddChoice("classifier.libsvm.m.oneclass", "Distribution estimation (One Class SVM)");
SetParameterDescription("classifier.libsvm.m.oneclass",
"All the training data are from the same class, SVM builds a boundary "
"that separates the class from the rest of the feature space.");
SetParameterString("classifier.libsvm.m", "csvc", false);
}
AddParameter(ParameterType_Float, "classifier.libsvm.c", "Cost parameter C");
SetParameterFloat("classifier.libsvm.c",1.0, false);
SetParameterDescription(
"classifier.libsvm.c",
"SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.");
SetParameterDescription("classifier.libsvm.c",
"SVM models have a cost parameter C (1 by default) to control the "
"trade-off between training errors and forcing rigid margins.");
// It seems that it miss a nu parameter for the nu-SVM use.
AddParameter(ParameterType_Empty, "classifier.libsvm.opt", "Parameters optimization");
MandatoryOff("classifier.libsvm.opt");
SetParameterDescription("classifier.libsvm.opt", "SVM parameters optimization flag.");
......@@ -73,8 +110,13 @@ namespace Wrapper
{
AddParameter(ParameterType_Float, "classifier.libsvm.eps", "Epsilon");
SetParameterFloat("classifier.libsvm.eps",1e-3, false);
SetParameterDescription("classifier.libsvm.eps",
"Parameter for the epsilon regression mode.");
AddParameter(ParameterType_Float, "classifier.libsvm.nu", "Nu");
SetParameterFloat("classifier.libsvm.nu",0.5, false);
SetParameterDescription("classifier.libsvm.nu",
"Cost parameter Nu, in the range 0..1, the larger the value, "
"the smoother the decision.");
}
}
......@@ -163,4 +205,4 @@ namespace Wrapper
} //end namespace wrapper
} //end namespace otb
#endif
#endif
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment