Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
otb
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sébastien Peillet
otb
Commits
2d0c7c01
Commit
2d0c7c01
authored
7 years ago
by
Antoine Regimbeau
Browse files
Options
Downloads
Patches
Plain Diff
Got the file from doc sprint, in order to work properly on the app
parent
de9c2717
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Modules/Applications/AppClassification/include/otbTrainLibSVM.txx
+46
-4
46 additions, 4 deletions
...Applications/AppClassification/include/otbTrainLibSVM.txx
with
46 additions
and
4 deletions
Modules/Applications/AppClassification/include/otbTrainLibSVM.txx
+
46
−
4
View file @
2d0c7c01
...
...
@@ -37,9 +37,23 @@ namespace Wrapper
SetParameterDescription("classifier.libsvm", "This group of parameters allows setting SVM classifier parameters.");
AddParameter(ParameterType_Choice, "classifier.libsvm.k", "SVM Kernel Type");
AddChoice("classifier.libsvm.k.linear", "Linear");
SetParameterDescription("classifier.libsvm.k.linear",
"Linear Kernel, no mapping is done, this is the fastest option.");
AddChoice("classifier.libsvm.k.rbf", "Gaussian radial basis function");
SetParameterDescription("classifier.libsvm.k.rbf",
"This kernel is a good choice in most of the case. It is "
"an exponential function of the euclidian distance between "
"the vectors.");
AddChoice("classifier.libsvm.k.poly", "Polynomial");
SetParameterDescription("classifier.libsvm.k.poly",
"Polynomial Kernel, the mapping is a polynomial function.");
AddChoice("classifier.libsvm.k.sigmoid", "Sigmoid");
SetParameterDescription("classifier.libsvm.k.sigmoid",
"The kernel is a hyperbolic tangente function of the vectors.");
SetParameterString("classifier.libsvm.k", "linear", false);
SetParameterDescription("classifier.libsvm.k", "SVM Kernel Type.");
AddParameter(ParameterType_Choice, "classifier.libsvm.m", "SVM Model Type");
...
...
@@ -47,21 +61,44 @@ namespace Wrapper
if (this->m_RegressionFlag)
{
AddChoice("classifier.libsvm.m.epssvr", "Epsilon Support Vector Regression");
SetParameterDescription("classifier.libsvm.m.epssvr",
"The distance between feature vectors from the training set and the "
"fitting hyper-plane must be less than Epsilon. For outliers the penalty "
"multiplier C is used ");
AddChoice("classifier.libsvm.m.nusvr", "Nu Support Vector Regression");
SetParameterString("classifier.libsvm.m", "epssvr", false);
SetParameterDescription("classifier.libsvm.m.nusvr",
"Same as the epsilon regression except that this time the bounded "
"parameter nu is used instead of epsilon");
}
else
{
AddChoice("classifier.libsvm.m.csvc", "C support vector classification");
SetParameterDescription("classifier.libsvm.m.csvc",
"This formulation allows imperfect separation of classes. The penalty "
"is set through the cost parameter C.");
AddChoice("classifier.libsvm.m.nusvc", "Nu support vector classification");
SetParameterDescription("classifier.libsvm.m.nusvc",
"This formulation allows imperfect separation of classes. The penalty "
"is set through the cost parameter Nu. As compared to C, Nu is harder "
"to optimize, and may not be as fast.");
AddChoice("classifier.libsvm.m.oneclass", "Distribution estimation (One Class SVM)");
SetParameterDescription("classifier.libsvm.m.oneclass",
"All the training data are from the same class, SVM builds a boundary "
"that separates the class from the rest of the feature space.");
SetParameterString("classifier.libsvm.m", "csvc", false);
}
AddParameter(ParameterType_Float, "classifier.libsvm.c", "Cost parameter C");
SetParameterFloat("classifier.libsvm.c",1.0, false);
SetParameterDescription(
"classifier.libsvm.c",
"SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.");
SetParameterDescription("classifier.libsvm.c",
"SVM models have a cost parameter C (1 by default) to control the "
"trade-off between training errors and forcing rigid margins.");
// It seems that it miss a nu parameter for the nu-SVM use.
AddParameter(ParameterType_Empty, "classifier.libsvm.opt", "Parameters optimization");
MandatoryOff("classifier.libsvm.opt");
SetParameterDescription("classifier.libsvm.opt", "SVM parameters optimization flag.");
...
...
@@ -73,8 +110,13 @@ namespace Wrapper
{
AddParameter(ParameterType_Float, "classifier.libsvm.eps", "Epsilon");
SetParameterFloat("classifier.libsvm.eps",1e-3, false);
SetParameterDescription("classifier.libsvm.eps",
"Parameter for the epsilon regression mode.");
AddParameter(ParameterType_Float, "classifier.libsvm.nu", "Nu");
SetParameterFloat("classifier.libsvm.nu",0.5, false);
SetParameterDescription("classifier.libsvm.nu",
"Cost parameter Nu, in the range 0..1, the larger the value, "
"the smoother the decision.");
}
}
...
...
@@ -163,4 +205,4 @@ namespace Wrapper
} //end namespace wrapper
} //end namespace otb
#endif
#endif
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment