Skip to content
Snippets Groups Projects
Commit 9aa66b17 authored by Marina Bertolino's avatar Marina Bertolino
Browse files

DOC: enhance KMeansClassification application and style

parent 976a8f97
No related branches found
No related tags found
No related merge requests found
......@@ -47,23 +47,29 @@ private:
SetDocName("Unsupervised KMeans image classification");
SetDocLongDescription("Performs unsupervised KMeans image classification."
"KMeansClassification is a composite application, using an existing training and classification application."
"The SharkKMeans model is used."
"The steps of this composite application : \
1) ImageEnveloppe : create a shapefile (1 polygon), \
2) PolygonClassStatistics : compute the statistics, \
3) SampleSelection : select the samples by constant strategy in the shapefile, \
4) SamplesExtraction : extract the samples descriptors, \
5) TrainVectorClassifier : train the SharkKMeans model, \
6) ComputeImagesStatistics : compute images second order statistics, \
7) ImageClassifier : performs the classification of the input image according to a model file."
"If you want keep the temporary files (sample selected, model file, ...), initialize cleanup parameter.");
"KMeansClassification is a composite application, "
"using an existing training and classification application."
"The SharkKMeans model is used.\n"
"The steps of this composite application :\n"
"1) ImageEnveloppe : create a shapefile (1 polygon),\n"
"2) PolygonClassStatistics : compute the statistics,\n"
"3) SampleSelection : select the samples by constant strategy in the shapefile "
"(1000000 samples max),\n"
"4) SamplesExtraction : extract the samples descriptors,\n"
"5) TrainVectorClassifier : train the SharkKMeans model,\n"
"6) ComputeImagesStatistics : compute images second order statistics,\n"
"7) ImageClassifier : performs the classification of the input image "
"according to a model file.\n\n"
"It's possible to choice random/periodic modes of the SampleSelection application.\n"
"If you want keep the temporary files (sample selected, model file, ...), "
"initialize cleanup parameter.\n"
"For more information on shark KMeans algorithm [1].");
SetDocLimitations("None");
SetDocAuthors("OTB-Team");
SetDocSeeAlso("otbImageEnveloppe otbPolygonClassStatistics otbSampleSelection otbSamplesExtraction otbTrainVectorClassifier otbImageClassifier");
SetDocSeeAlso("ImageEnveloppe PolygonClassStatistics SampleSelection SamplesExtraction "
"PolygonClassStatistics TrainVectorClassifier ImageClassifier\n"
"[1] http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/algorithms/kmeans.html");
AddDocTag(Tags::Learning);
AddDocTag(Tags::Segmentation);
......@@ -140,7 +146,6 @@ private:
otbAppLogINFO( <<"Final clean-up ..." );
fileNames.clear();
}
}
private :
......
......@@ -44,8 +44,8 @@ void ClassKMeansBase::InitKMSampling()
{
AddApplication("ImageEnvelope", "imgenvelop", "mean shift smoothing");
AddApplication("PolygonClassStatistics", "polystats", "Polygon Class Statistics");
AddApplication( "SampleSelection", "select", "Sample selection" );
AddApplication( "SampleExtraction", "extraction", "Sample extraction" );
AddApplication("SampleSelection", "select", "Sample selection");
AddApplication("SampleExtraction", "extraction", "Sample extraction");
AddParameter(ParameterType_Int, "ts", "Training set size");
SetParameterDescription("ts", "Size of the training set (in pixels).");
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment