Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
otb
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sébastien Peillet
otb
Commits
ae3191a2
Commit
ae3191a2
authored
7 years ago
by
Cédric Traizet
Browse files
Options
Downloads
Patches
Plain Diff
pca added (work in progress)
parent
ab7142d8
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
include/PCAModel.h
+69
-0
69 additions, 0 deletions
include/PCAModel.h
include/PCAModel.txx
+155
-0
155 additions, 0 deletions
include/PCAModel.txx
with
224 additions
and
0 deletions
include/PCAModel.h
0 → 100644
+
69
−
0
View file @
ae3191a2
#ifndef PCAModel_h
#define PCAModel_h
#include
"DimensionalityReductionModel.h"
#include
<shark/Algorithms/Trainers/PCA.h>
namespace
otb
{
template
<
class
TInputValue
>
class
ITK_EXPORT
PCAModel
:
public
DimensionalityReductionModel
<
TInputValue
,
TInputValue
>
{
public:
typedef
PCAModel
Self
;
typedef
DimensionalityReductionModel
<
TInputValue
,
TInputValue
>
Superclass
;
typedef
itk
::
SmartPointer
<
Self
>
Pointer
;
typedef
itk
::
SmartPointer
<
const
Self
>
ConstPointer
;
typedef
typename
Superclass
::
InputValueType
InputValueType
;
typedef
typename
Superclass
::
InputSampleType
InputSampleType
;
typedef
typename
Superclass
::
InputListSampleType
InputListSampleType
;
typedef
typename
Superclass
::
TargetValueType
TargetValueType
;
typedef
typename
Superclass
::
TargetSampleType
TargetSampleType
;
typedef
typename
Superclass
::
TargetListSampleType
TargetListSampleType
;
typedef
typename
Superclass
::
ConfidenceValueType
ConfidenceValueType
;
typedef
typename
Superclass
::
ConfidenceSampleType
ConfidenceSampleType
;
typedef
typename
Superclass
::
ConfidenceListSampleType
ConfidenceListSampleType
;
itkNewMacro
(
Self
);
itkTypeMacro
(
AutoencoderModel
,
DimensionalityReductionModel
);
unsigned
int
GetDimension
()
{
return
m_Dimension
;};
itkGetMacro
(
Dimension
,
unsigned
int
);
bool
CanReadFile
(
const
std
::
string
&
filename
);
bool
CanWriteFile
(
const
std
::
string
&
filename
);
void
Save
(
const
std
::
string
&
filename
,
const
std
::
string
&
name
=
""
)
ITK_OVERRIDE
;
void
Load
(
const
std
::
string
&
filename
,
const
std
::
string
&
name
=
""
)
ITK_OVERRIDE
;
void
Train
()
ITK_OVERRIDE
;
//void Dimensionality_reduction() {}; // Dimensionality reduction is done by DoPredict
protected
:
PCAModel
();
~
PCAModel
()
ITK_OVERRIDE
;
virtual
TargetSampleType
DoPredict
(
const
InputSampleType
&
input
,
ConfidenceValueType
*
quality
=
ITK_NULLPTR
)
const
ITK_OVERRIDE
;
virtual
void
DoPredictBatch
(
const
InputListSampleType
*
,
const
unsigned
int
&
startIndex
,
const
unsigned
int
&
size
,
TargetListSampleType
*
,
ConfidenceListSampleType
*
=
ITK_NULLPTR
)
const
ITK_OVERRIDE
;
private
:
LinearModel
<>
m_encoder
LinearModel
<>
m_decoder
PCA
m_pca
;
unsigned
int
m_Dimension
;
};
}
// end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include
"PCAModel.txx"
#endif
#endif
This diff is collapsed.
Click to expand it.
include/PCAModel.txx
0 → 100644
+
155
−
0
View file @
ae3191a2
#ifndef AutoencoderModel_txx
#define AutoencoderModel_txx
#include <fstream>
#include <shark/Data/Dataset.h>
#include "itkMacro.h"
#include "otbSharkUtils.h"
//include train function
#include <shark/ObjectiveFunctions/ErrorFunction.h>
#include <shark/Algorithms/GradientDescent/Rprop.h>// the RProp optimization algorithm
#include <shark/ObjectiveFunctions/Loss/SquaredLoss.h> // squared loss used for regression
#include <shark/ObjectiveFunctions/Regularizer.h> //L2 regulariziation
namespace otb
{
template <class TInputValue>
PCAModel<TInputValue>::PCAModel()
{
this->m_IsRegressionSupported = true;
}
template <class TInputValue>
PCAModel<TInputValue,AutoencoderType>::~PCAModel()
{
}
template <class TInputValue>
void PCAModel<TInputValue>::Train()
{
std::vector<shark::RealVector> features;
Shark::ListSampleToSharkVector(this->GetInputListSample(), features);
shark::Data<shark::RealVector> inputSamples = shark::createDataFromRange( features );
m_pca(inputSamples);
pca.encoder(m_encoder, m_Dimension);
pca.decoder(m_decoder, m_Dimension);
}
template <class TInputValue>
bool PCAModel<TInputValue>::CanReadFile(const std::string & filename)
{
try
{
this->Load(filename);
m_net.name();
}
catch(...)
{
return false;
}
return true;
}
template <class TInputValue>
bool PCAModel<TInputValue>::CanWriteFile(const std::string & filename)
{
return true;
}
template <class TInputValue>
void PCAModel<TInputValue>::Save(const std::string & filename, const std::string & name)
{
std::ofstream ofs(filename);
ofs << m_net.name() << std::endl; //first line
boost::archive::polymorphic_text_oarchive oa(ofs);
m_net.write(oa);
ofs.close();
}
template <class TInputValue>
void PCAModel<TInputValue>::Load(const std::string & filename, const std::string & name)
{
std::ifstream ifs(filename);
char autoencoder[256];
ifs.getline(autoencoder,256);
std::string autoencoderstr(autoencoder);
if (autoencoderstr != m_net.name()){
itkExceptionMacro(<< "Error opening " << filename.c_str() );
}
boost::archive::polymorphic_text_iarchive ia(ifs);
m_net.read(ia);
ifs.close();
m_NumberOfHiddenNeurons = m_net.numberOfHiddenNeurons();
//this->m_Size = m_NumberOfHiddenNeurons;
}
template <class TInputValue>
typename PCAModel<TInputValue>::TargetSampleType
PCAModel<TInputValue>::DoPredict(const InputSampleType & value, ConfidenceValueType *quality) const
{
shark::RealVector samples(value.Size());
for(size_t i = 0; i < value.Size();i++)
{
samples.push_back(value[i]);
}
shark::Data<shark::RealVector> data;
data.element(0)=samples;
data = m_net.encode(data);
TargetSampleType target;
//target.SetSize(m_NumberOfHiddenNeurons);
for(unsigned int a = 0; a < m_NumberOfHiddenNeurons; ++a){
//target[a]=data.element(0)[a];
target=data.element(0)[a];
}
return target;
}
template <class TInputValue>
void PCAModel<TInputValue>
::DoPredictBatch(const InputListSampleType *input, const unsigned int & startIndex, const unsigned int & size, TargetListSampleType * targets, ConfidenceListSampleType * quality) const
{
std::vector<shark::RealVector> features;
Shark::ListSampleRangeToSharkVector(input, features,startIndex,size);
shark::Data<shark::RealVector> data = shark::createDataFromRange(features);
TargetSampleType target;
data = m_net.encode(data);
unsigned int id = startIndex;
target.SetSize(m_NumberOfHiddenNeurons);
for(const auto& p : data.elements()){
for(unsigned int a = 0; a < m_NumberOfHiddenNeurons; ++a){
target[a]=p[a];
//target.SetElement(a,p[a]);
}
//std::cout << p << std::endl;
targets->SetMeasurementVector(id,target);
++id;
}
}
} // namespace otb
#endif
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment