Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
otb
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Youssefi
otb
Commits
11defaa2
Commit
11defaa2
authored
14 years ago
by
Grégoire Mercier
Browse files
Options
Downloads
Patches
Plain Diff
ENH: MNF refactoring
parent
bda19184
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Code/Hyperspectral/otbMNFImageFilter.h
+21
-38
21 additions, 38 deletions
Code/Hyperspectral/otbMNFImageFilter.h
Code/Hyperspectral/otbMNFImageFilter.txx
+94
-66
94 additions, 66 deletions
Code/Hyperspectral/otbMNFImageFilter.txx
with
115 additions
and
104 deletions
Code/Hyperspectral/otbMNFImageFilter.h
+
21
−
38
View file @
11defaa2
...
...
@@ -96,15 +96,8 @@ public:
* Set/Get the number of required largest principal components.
* The noise removal is not concerned by this part, only the PCA part...
*/
void
SetNumberOfPrincipalComponentsRequired
(
unsigned
int
num
)
{
this
->
GetPCAImageFilter
()
->
SetNumberOfPrincipalComponentsRequired
(
num
);
}
unsigned
int
GetNumberOfPrincipalComponentsRequired
()
const
{
return
this
->
GetPCAImageFilter
()
->
GetNumberOfPrincipalComponentsRequired
();
}
itkGetMacro
(
NumberOfPrincipalComponentsRequired
,
unsigned
int
);
itkSetMacro
(
NumberOfPrincipalComponentsRequired
,
unsigned
int
);
itkGetConstMacro
(
Normalizer
,
NormalizeFilterType
*
);
itkGetMacro
(
Normalizer
,
NormalizeFilterType
*
);
...
...
@@ -133,44 +126,29 @@ public:
m_GivenStdDevValues
=
true
;
}
MatrixType
GetCovarianceMatrix
()
const
{
return
this
->
GetPCAImageFilter
()
->
GetGovarianceMatrix
();
}
itkGetConstMacro
(
CovarianceMatrix
,
MatrixType
);
void
SetCovarianceMatrix
(
const
MatrixType
&
cov
)
{
this
->
GetPCAImageFilter
()
->
SetCovarianceMatrix
();
m_CovarianceMatrix
=
cov
;
m_GivenCovarianceMatrix
=
true
;
}
itkGetMacro
(
NoiseCovarianceMatrix
,
MatrixType
);
itkGetConstMacro
(
NoiseCovarianceMatrix
,
MatrixType
);
void
SetNoiseCovarianceMatrix
(
const
MatrixType
&
mat
)
{
m_NoiseCovarianceMatrix
=
mat
;
m_GivenNoiseCovarianceMatrix
=
true
;
}
MatrixType
GetTransformationMatrix
()
const
{
return
this
->
GetPCAImageFilter
()
->
GetTransformationMatrix
();
}
itkGetConstMacro
(
TransformationMatrix
,
MatrixType
);
void
SetTransformationMatrix
(
const
MatrixType
&
transf
,
bool
isForward
=
true
)
{
return
this
->
GetPCAImageFilter
()
->
SetTransformationMatrix
(
transf
,
isForward
);
}
/** If the NoiseTransformation is given, the NoiseImageFilter is useless */
itkGetMacro
(
NoiseTransformationMatrix
,
MatrixType
);
void
SetNoiseTransformationMatrix
(
const
MatrixType
&
mat
,
bool
isForward
=
true
)
{
m_NoiseTransformationMatrix
=
mat
;
m_GivenNoiseTransformationMatrix
=
true
;
m_IsNoiseTransformationMatrixForward
=
isForward
;
m_TransformationMatrix
=
transf
;
m_GivenTransformationMatrix
=
true
;
m_IsTransformationMatrixForward
=
isForward
;
}
itkGetConstMacro
(
NoiseRatio
Values
,
VectorType
);
itkGetConstMacro
(
Eigen
Values
,
VectorType
);
protected
:
MNFImageFilter
();
...
...
@@ -200,24 +178,29 @@ protected:
void
GetTransformationMatrixFromCovarianceMatrix
();
/** Internal attributes */
unsigned
int
m_NumberOfPrincipalComponentsRequired
;
bool
m_UseNormalization
;
bool
m_GivenMeanValues
;
bool
m_GivenStdDevValues
;
bool
m_GivenCovarianceMatrix
;
bool
m_GivenNoiseCovarianceMatrix
;
bool
m_Given
Noise
TransformationMatrix
;
bool
m_Is
Noise
TransformationMatrixForward
;
bool
m_GivenTransformationMatrix
;
bool
m_IsTransformationMatrixForward
;
VectorType
m_MeanValues
;
VectorType
m_StdDevValues
;
MatrixType
m_CovarianceMatrix
;
MatrixType
m_NoiseCovarianceMatrix
;
MatrixType
m_
Noise
TransformationMatrix
;
VectorType
m_
NoiseRatio
Values
;
MatrixType
m_TransformationMatrix
;
VectorType
m_
Eigen
Values
;
NormalizeFilterPointerType
m_Normalizer
;
NoiseImageFilterPointerType
m_NoiseImageFilter
;
PCAImage
FilterPointerType
m_
PCAImageFilte
r
;
CovarianceEstimator
FilterPointerType
m_
CovarianceEstimato
r
;
CovarianceEstimatorFilterPointerType
m_NoiseCovarianceEstimator
;
PCAImageFilterPointerType
m_PCAImageFilter
;
TransformFilterPointerType
m_Transformer
;
};
// end of class
...
...
This diff is collapsed.
Click to expand it.
Code/Hyperspectral/otbMNFImageFilter.txx
+
94
−
66
View file @
11defaa2
...
...
@@ -22,6 +22,7 @@
#include "itkExceptionObject.h"
#include <vnl/vnl_matrix.h>
#include <vnl/algo/vnl_matrix_inverse.h>
#include <vnl/algo/vnl_generalized_eigensystem.h>
namespace otb
...
...
@@ -34,17 +35,22 @@ MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransf
{
this->SetNumberOfRequiredInputs(1);
m_NumberOfPrincipalComponentsRequired = 0;
m_UseNormalization = false;
m_GivenMeanValues = false;
m_GivenStdDevValues = false;
m_GivenCovarianceMatrix = false;
m_GivenNoiseCovarianceMatrix = false;
m_GivenNoiseTransformationMatrix = false;
m_GivenTransformationMatrix = false;
m_IsTransformationMatrixForward = true;
m_Normalizer = NormalizeFilterType::New();
m_NoiseImageFilter = NoiseImageFilterType::New();
m_
PCAImageFilter = PCAImage
FilterType::New();
m_
CovarianceEstimator = CovarianceEstimator
FilterType::New();
m_NoiseCovarianceEstimator = CovarianceEstimatorFilterType::New();
m_PCAImageFilter = PCAImageFilterType::New();
m_Transformer = TransformFilterType::New();
}
...
...
@@ -111,12 +117,10 @@ MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransf
m_Normalizer->SetInput( inputImgPtr );
}
if ( !m_Given
Noise
TransformationMatrix )
if ( !m_GivenTransformationMatrix )
{
if ( !m_GivenNoiseCovarianceMatrix )
{
otbGenericMsgDebugMacro(<< "Covariance estimation");
if ( m_UseNormalization )
m_NoiseImageFilter->SetInput( m_Normalizer->GetOutput() );
else
...
...
@@ -126,13 +130,29 @@ MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransf
m_NoiseCovarianceEstimator->Update();
m_NoiseCovarianceMatrix = m_NoiseCovarianceEstimator->GetCovariance();
//m_NoiseCovarianceMatrix = m_NoiseCovarianceEstimator->GetCorrelation();
}
if ( !m_GivenCovarianceMatrix )
{
if ( m_UseNormalization )
m_CovarianceEstimator->SetInput( m_Normalizer->GetOutput() );
else
m_CovarianceEstimator->SetInput( inputImgPtr );
m_CovarianceEstimator->Update();
m_CovarianceMatrix = m_CovarianceEstimator->GetCovariance();
}
GetTransformationMatrixFromCovarianceMatrix();
}
else if ( !m_IsTransformationMatrixForward )
{
// Prevents from multiple transpose in pipeline
m_IsTransformationMatrixForward = true;
m_TransformationMatrix = m_TransformationMatrix.GetTranspose();
}
if ( m_
Noise
TransformationMatrix.GetVnlMatrix().empty() )
if ( m_TransformationMatrix.GetVnlMatrix().empty() )
{
throw itk::ExceptionObject( __FILE__, __LINE__,
"Empty noise transformation matrix",
...
...
@@ -144,14 +164,11 @@ MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransf
else
m_Transformer->SetInput( inputImgPtr );
m_Transformer->SetMatrix( m_NoiseTransformationMatrix.GetVnlMatrix() );
m_PCAImageFilter->SetInput( m_Transformer->GetOutput() );
m_PCAImageFilter->GraftOutput( this->GetOutput() );
m_PCAImageFilter->Update();
this->GraftOutput( m_PCAImageFilter->GetOutput() );
m_Transformer->SetMatrix( m_TransformationMatrix.GetVnlMatrix() );
m_Transformer->GraftOutput( this->GetOutput() );
m_Transformer->Update();
// FIXME Sortir les valeurs propores et calculer les SNR
this->GraftOutput( m_Transformer->GetOutput() );
}
template <class TInputImage, class TOutputImage,
...
...
@@ -161,43 +178,43 @@ void
MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransformation >
::ReverseGenerateData ()
{
m_PCAImageFilter->SetInput( this->GetInput() );
if ( !m_PCAImageFilter->GetGivenTransformationMatrix() )
if ( !m_GivenTransformationMatrix )
{
if ( !m_
PCAImageFilter->Get
GivenCovarianceMatrix
()
)
if ( !m_GivenCovarianceMatrix )
{
// the MNF output is the PCA output
m_PCAImageFilter->GraftOutput( this->GetOutput() );
m_PCAImageFilter->Update();
this->GraftOutput( m_PCAImageFilter->GetOutput() );
return;
throw itk::ExceptionObject( __FILE__, __LINE__,
"Inverse Transformation or at least Covariance matrix is required to invert MNF",
ITK_LOCATION );
}
else
if ( !m_GivenNoiseCovarianceMatrix )
{
GetTransformationMatrixFromCovarianceMatrix();
m_Noi
seTransformation
Matrix = m_NoiseTransformationMatrix.GetTranspose();
m_IsNoiseTransformationMatrixForward = false
;
throw itk::ExceptionObject( __FILE__, __LINE__,
"Inver
se
Transformation
or at least Noise Covariance matrix is required to invert MNF",
ITK_LOCATION )
;
}
}
if (m_IsNoiseTransformationMatrixForward)
GetTransformationMatrixFromCovarianceMatrix();
m_IsTransformationMatrixForward = false;
m_TransformationMatrix = m_TransformationMatrix.GetTranspose();
}
else if ( m_IsTransformationMatrixForward )
{
// Prevent
s
from multiple transpos
ition
in pipeline
...
m_Is
Noise
TransformationMatrixForward = false;
m_
Noise
TransformationMatrix = m_
Noise
TransformationMatrix.GetTranspose();
// Prevent from multiple transpos
e
in pipeline
m_IsTransformationMatrixForward = false;
m_TransformationMatrix = m_TransformationMatrix.GetTranspose();
}
if ( m_
Noise
TransformationMatrix.GetVnlMatrix().empty() )
if ( m_TransformationMatrix.GetVnlMatrix().empty() )
{
throw itk::ExceptionObject( __FILE__, __LINE__,
"Empty transformation matrix",
ITK_LOCATION);
}
m_Transformer->SetInput(
m_PCAImageFilter
->Get
Out
put() );
m_Transformer->SetMatrix( m_
Noise
TransformationMatrix.GetVnlMatrix() );
m_Transformer->SetInput(
this
->Get
In
put() );
m_Transformer->SetMatrix( m_TransformationMatrix.GetVnlMatrix() );
if ( m_UseNormalization )
{
...
...
@@ -243,35 +260,41 @@ MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransf
MatrixType Id ( m_NoiseCovarianceMatrix );
Id.SetIdentity();
typename MatrixType::InternalMatrixType A = m_NoiseCovarianceMatrix.GetVnlMatrix();
typename MatrixType::InternalMatrixType Ax_inv =
vnl_matrix_inverse< typename MatrixType::InternalMatrixType::element_type>
( m_CovarianceMatrix.GetVnlMatrix() );
typename MatrixType::InternalMatrixType An = m_NoiseCovarianceMatrix.GetVnlMatrix();
typename MatrixType::InternalMatrixType W = An * Ax_inv;
typename MatrixType::InternalMatrixType I = Id.GetVnlMatrix();
vnl_generalized_eigensystem solver (
A
, I );
vnl_generalized_eigensystem solver (
W
, I );
typename MatrixType::InternalMatrixType transf = solver.V;
typename MatrixType::InternalMatrixType normMat
= transf.transpose() * m_CovarianceMatrix.GetVnlMatrix() * transf;
for ( unsigned int i = 0; i < transf.rows(); i++ )
{
double norm = 1. / vnl_sqrt( normMat.get(i,i) );
for ( unsigned int j = 0; j < transf.cols(); j++ )
transf.put( i, j, transf.get(i,j) * norm );
}
transf.fliplr();
transf.inplace_transpose();
m_NoiseTransformationMatrix = transf;
if ( m_NumberOfPrincipalComponentsRequired
!= this->GetInput()->GetNumberOfComponentsPerPixel() )
m_TransformationMatrix = transf.get_n_rows( 0, m_NumberOfPrincipalComponentsRequired );
else
m_TransformationMatrix = transf;
vnl_vector< double > valP = solver.D.diagonal();
valP.flip();
/*
* We used normalized PCA
*/
for ( unsigned int i = 0; i < valP.size(); i++ )
{
if ( valP[i] != 0. )
valP[i] = 1. / vcl_sqrt( vcl_abs( valP[i] ) );
else
throw itk::ExceptionObject( __FILE__, __LINE__,
"Null Eigen value !!", ITK_LOCATION );
}
valP.post_multiply( transf );
m_NoiseRatioValues.SetSize( valP.size() );
for ( unsigned int i = 0; i < valP.size(); i++ )
m_NoiseRatioValues[i] = static_cast< RealType >( valP[i] );
m_EigenValues.SetSize( m_NumberOfPrincipalComponentsRequired );
for ( unsigned int i = 0; i < m_NumberOfPrincipalComponentsRequired; i++ )
m_EigenValues[i] = static_cast< RealType >( valP[i] );
}
template <class TInputImage, class TOutputImage,
...
...
@@ -283,8 +306,6 @@ MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransf
{
Superclass::PrintSelf( os, indent );
GetPCAImageFilter()->Print( os, indent.GetNextIndent() );
if ( !m_NoiseCovarianceMatrix.GetVnlMatrix().empty() )
{
os << indent << "Noise Covariance matrix";
...
...
@@ -293,26 +314,33 @@ MNFImageFilter< TInputImage, TOutputImage, TNoiseImageFilter, TDirectionOfTransf
os << "\n";
m_NoiseCovarianceMatrix.GetVnlMatrix().print(os);
}
if ( m_GivenNoiseCovarianceMatrix )
m_NoiseCovarianceEstimator->Print( os, indent.GetNextIndent() );
if ( !m_CovarianceMatrix.GetVnlMatrix().empty() )
{
os << indent << "Covariance matrix";
if ( m_NoiseCovarianceMatrix )
os << " (given)";
os << "\n";
m_CovarianceMatrix.GetVnlMatrix().print(os);
}
if ( !m_
Noise
TransformationMatrix.GetVnlMatrix().empty() );
if ( !m_TransformationMatrix.GetVnlMatrix().empty() );
{
os << indent << "
Noise
Transformation matrix";
if ( m_Given
Noise
TransformationMatrix )
os << indent << "Transformation matrix";
if ( m_GivenTransformationMatrix )
os << " (given)";
os << "\n";
m_
Noise
TransformationMatrix.GetVnlMatrix().print(os);
m_TransformationMatrix.GetVnlMatrix().print(os);
}
if ( m_
NoiseRatio
Values.Size() > 0 )
if ( m_
Eigen
Values.Size() > 0 )
{
os << indent << "RMS value :";
for ( unsigned int i = 0; i < m_
NoiseRatio
Values.Size(); i++ )
os << " " << m_
NoiseRatio
Values[i];
for ( unsigned int i = 0; i < m_
Eigen
Values.Size(); i++ )
os << " " << m_
Eigen
Values[i];
os << "\n";
}
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment