Skip to content
Snippets Groups Projects
Commit 39d8efa0 authored by Emmanuel Christophe's avatar Emmanuel Christophe
Browse files

DOC: fixing doxygen errors

parent d3ed0a02
No related branches found
No related tags found
No related merge requests found
......@@ -105,7 +105,7 @@ KullbackLeiblerSupervizedDistance< TInput1, TInput2, TInputROIImage, TOutput >
/**
* Connect the training area to build the reference pdfs,
* with parameters to be hold by
* \doxygen{Functor}{KullbackLeiblerSupervizedDistance}.
* Functor::KullbackLeiblerSupervizedDistance.
*
* Images 1 & 2 are supposed to be already connected.
*/
......
......@@ -27,7 +27,7 @@ namespace otb
/** \class ImageFittingPolygonListFilter
* \brief Slightly deform polygon to reach higher enery from the image
*
* <br>Limitations:</br> This filter is currently working with integer position
* <b>Limitations:</b> This filter is currently working with integer position
* for the polygon vertices. It should be optimized for continuous positions.
*
*/
......
......@@ -230,7 +230,7 @@ protected:
/** Compute differenec of gaussian
*
* \param input, current input in process
* \param input current input in process
*/
void ComputeDifferenceOfGaussian(InputImagePointerType input);
......@@ -258,7 +258,7 @@ protected:
* \param currentScale iterator
* \param previousScale iterator
* \param nextScale iterator
* \param offset pixel location
* \param solution
*
* \return true if key point is accepted, false otherwise
*/
......
......@@ -30,7 +30,7 @@ namespace otb
*
* The matching criteria is that the ratio between the distance to the first nearest neighbor and the
* second nearest neighbor is lower than the distance threshold. The distance used can be set via the TDistance
* template parameters. It has to implement the Evaluate() method (see \doxygen{EuclideanDistance} for more details).
* template parameters. It has to implement the Evaluate() method (see EuclideanDistance for more details).
*
* By default, the algorithm tries to match points from pointset 1 to points from pointset 2. If back matching is activated,
* it will aslo try to match points from pointset 2 to points from pointset 2, and discard matches that do not appear both in
......
......@@ -29,16 +29,16 @@ namespace otb
* \brief This functor computes textures based on line direction analysis through the central pixel.
*
* Directions are computed using NumberOfDirection, used to compute a constant step angle.
* A direction is defined as : $\mathit{d_{i} = \sqrt{(m^{e1}-m{e2})^{2}+(n^{e1}-n{e2})^{2}}}$
* From $\mathit{d_{i}}, histograms are defined :
* $\mathit{H(c) : \{c \in I \mid \lbrack d_{1}(c), \ldots , d_{i}(c), \ldots , d_{D}(c)\rbrack \}}$
* A direction is defined as : \f$ \mathit{d_{i} = \sqrt{(m^{e1}-m{e2})^{2}+(n^{e1}-n{e2})^{2}}} \f$
* From \f$ \mathit{d_{i}} \f$, histograms are defined :
* \f$ \mathit{H(c) : \{c \in I \mid \lbrack d_{1}(c), \ldots , d_{i}(c), \ldots , d_{D}(c)\rbrack \}} \f$
* Thus, 6 textures are defined :
* $\mathit{length = \max_{i \in \lbrack1;D\rbrack}(d_{i}(c)}$
* $\mathit{width = \min_{i \in \lbrack1;D\rbrack}(d_{i}(c)}$
* $\mathit{PSI = \frac{1}{D}\sum_{1=1}^{D}d_{i}(c)}$
* $\mathit{\omega-mean = \frac{1}{D}\sum_{1=1}^{D}\frac{\alpha.(k_{i}-1)}{st_{i}}d_{i}(c)}$
* $\mathit{ratio = \arctan{\frac{\sum_{j=1}^{n}{sort_{min}^{j}(H(c))}}{\sum_{j=1}^{n}{sort_{max}^{j}(H(c))}}}}$
* $\mathit{SD = \frac{1}{D-1}\sqrt{\sum_{1=1}^{D}(d_{i}(c)-PSI)^{2}}}$
* \f$ \mathit{length = \max_{i \in \lbrack1;D\rbrack}(d_{i}(c)} \f$
* \f$ \mathit{width = \min_{i \in \lbrack1;D\rbrack}(d_{i}(c)} \f$
* \f$ \mathit{PSI = \frac{1}{D}\sum_{1=1}^{D}d_{i}(c)} \f$
* \f$ \mathit{\omega-mean = \frac{1}{D}\sum_{1=1}^{D}\frac{\alpha.(k_{i}-1)}{st_{i}}d_{i}(c)} \f$
* \f$ \mathit{ratio = \arctan{\frac{\sum_{j=1}^{n}{sort_{min}^{j}(H(c))}}{\sum_{j=1}^{n}{sort_{max}^{j}(H(c))}}}} \f$
* \f$ \mathit{SD = \frac{1}{D-1}\sqrt{\sum_{1=1}^{D}(d_{i}(c)-PSI)^{2}}} \f$
*
* For more details, please refer to refer to Xin Huang, Liangpei Zhang and Pingxiang Li publication,
* Classification and Extraction of Spatial Features in Urban Areas
......@@ -46,7 +46,7 @@ namespace otb
* IEEE Geoscience and Remote Sensing Letters,
* vol. 4, n. 2, 2007, pp 260-264
*
* \ingroup Textures
* \ingroup Textures
*/
......
......@@ -38,10 +38,10 @@ namespace otb
* vol. 4, n. 2, 2007, pp 260-264
*
* The texture is computated for each pixel using its neighborhood.
* User can set the spatial threshold taht is the max line length, the spectral threshold
* User can set the spatial threshold that is the max line length, the spectral threshold
* that is the max difference authorized between a pixel of the line and the center pixel
* of the current neighborhood. Alpha and RationMaxConsideration are used to compute
* the \omega -mean value. Finally, The number of direction can be precised with
* of the current neighborhood. Alpha and RatioMaxConsideration are used to compute
* the \f$ \omega \f$ - mean value. Finally, The number of direction can be precised with
* NumberOfDirections.
* You can choose the computed textures using SetTextureStatus method (1:length, 2:width,
* 3:PSI, 4:w-mean, 5:ratio, 6:SD).
......
......@@ -33,22 +33,22 @@ namespace otb
* This class compute the polarimetric synthesis from two to four radar images,
* depening on the polarimetric architecture:
*
* - HH_HV : two channels are available: $S_{HH}$ and $S_{HV}$.
* Emit polarisation is fixed to horizontal orientation: $\psi_{i}=0$ and $\chi_{i}=0$.
* - VV_VH : two channels are available: $S_{VV}$ and $S_{VH}$.
* Emit polarisation is fixed to vertical orientation: $\psi_{i}=90^\circ$ and $\chi_{i}=0$.
* - HH_HV_VV : three channels are available: $S_{HH}$, $S_{HV}$ and $S_{VV}$.
* we make the assumption that cross polarisation are reciprocal ($S_{HV} = S_{VH}$).
* - HH_HV_VH_VV: four channels are available $S_{HH}$, $S_{HV}$, $S_{VH}$ and $S_{VV}$.
* - HH_HV : two channels are available: \f$ S_{HH} \f$ and \f$ S_{HV} \f$ .
* Emit polarisation is fixed to horizontal orientation: \f$ \psi_{i}=0 \f$ and \f$ \chi_{i}=0 \f$ .
* - VV_VH : two channels are available: \f$ S_{VV} \f$ and \f$ S_{VH} \f$ .
* Emit polarisation is fixed to vertical orientation: \f$ \psi_{i}=90^\circ \f$ and \f$ \chi_{i}=0 \f$ .
* - HH_HV_VV : three channels are available: \f$ S_{HH} \f$ , \f$ S_{HV} \f$ and \f$ S_{VV} \f$ .
* we make the assumption that cross polarisation are reciprocal ( \f$ S_{HV} = S_{VH} \f$ ).
* - HH_HV_VH_VV: four channels are available \f$ S_{HH} \f$ , \f$ S_{HV} \f$ , \f$ S_{VH} \f$ and \f$ S_{VV} \f$ .
*
* To resolve the synthesis, four parameters are required: $\psi_{i}$ , $\chi_{i}$, $\psi_{r}$ and $\chi_{r}$.
* To resolve the synthesis, four parameters are required: \f$ \psi_{i} \f$ , \f$ \chi_{i} \f$ , \f$ \psi_{r} \f$ and \f$ \chi_{r} \f$ .
* These parameters depend on the polarimetric architecture describe below.
*
* The result of the synthesis is a scalar image. Three modes are available:
*
* - none: set the four parameters;
* - co: $\psi_{r} = \psi_{i}$ and $\chi_{r} = \chi_{i}$
* - cross: $\psi_{r} = \psi_{i} + 90^\circ$ and $\chi_{r} = -\chi_{i}$
* - co: \f$ \psi_{r} = \psi_{i} \f$ and \f$ \chi_{r} = \chi_{i} \f$
* - cross: \f$ \psi_{r} = \psi_{i} + 90^\circ \f$ and \f$ \chi_{r} = -\chi_{i} \f$
*
* This class is parameterized over the type of the input images and
* the type of the output image. It is also parameterized by the
......
......@@ -28,7 +28,7 @@ namespace otb
/** \class ImageView
* \brief todo
* \Todo: Rename ImageViewer when refactoring will be completed.
* \todo: Rename ImageViewer when refactoring will be completed.
* \ingroup Visualization
*/
......
......@@ -29,7 +29,7 @@ namespace otb
/** \class PixelDescriptionView
* \brief todo
* \Todo: Rename PixelDescriptioner when refactoring will be completed.
* \todo: Rename PixelDescriptioner when refactoring will be completed.
* \ingroup Visualization
*/
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment