Skip to content
Snippets Groups Projects
Commit 8321b419 authored by Jonathan Guinet's avatar Jonathan Guinet
Browse files

ENH: Train SVM image classifier application parameters description.

parent 79b23d2e
No related branches found
No related tags found
No related merge requests found
......@@ -141,15 +141,22 @@ private:
{
AddParameter(ParameterType_InputImageList, "il", "Input Image List");
AddParameter(ParameterType_InputVectorDataList, "vd", "Vector Data of sample used to train the estimator");
AddParameter(ParameterType_Filename, "dem", "A DEM repository");
SetParameterDescription("il","a list of input images.");
AddParameter(ParameterType_InputVectorDataList, "vd", "Vector Data List");
SetParameterDescription("vd","a list of vector data sample used to train the estimator.");
AddParameter(ParameterType_Filename, "dem", "DEM repository");
MandatoryOff("dem");
AddParameter(ParameterType_Filename, "imstat", "XML file containing mean and standard deviation of input images");
SetParameterDescription("dem","path to SRTM repository");
AddParameter(ParameterType_Filename, "imstat", "XML image statistics file");
MandatoryOff("imstat");
SetParameterDescription("imstat","filename of an XML file containing mean and standard deviation of input images.");
AddParameter(ParameterType_Filename, "out", "Output SVM model");
SetParameterDescription("out","Output SVM model");
AddParameter(ParameterType_Float, "m", "Margin for SVM learning");
MandatoryOff("m");
SetParameterDescription("m","Margin for SVM learning");
AddParameter(ParameterType_Int, "b", "Balance and grow the training set");
SetParameterDescription("b", "Balance and grow the training set");
MandatoryOff("b");
AddParameter(ParameterType_Choice, "k",
"SVM Kernel Type");
......@@ -159,21 +166,28 @@ private:
AddChoice("k.poly", "Polynomial");
AddChoice("k.sigmoid", "Sigmoid");
SetParameterString("k", "linear");
AddParameter(ParameterType_Int, "mt", "Maximum size of the training sample (default = -1)");
SetParameterDescription("k", "SVM Kernel Type");
AddParameter(ParameterType_Int, "mt", "Maximum training sample size");
MandatoryOff("mt");
SetParameterInt("mt", -1);
AddParameter(ParameterType_Int, "mv", "Maximum size of the validation sample (default = -1)");
SetParameterDescription("mt", "Maximum size of the training sample (default = -1)");
AddParameter(ParameterType_Int, "mv", "Maximum validation sample size");
MandatoryOff("mv");
SetParameterInt("mv", -1);
SetParameterDescription("mv", "Maximum size of the validation sample (default = -1)");
AddParameter(ParameterType_Float, "vtr",
"training and validation sample ratio");
SetParameterDescription("vtr",
"Ratio between training and validation sample (0.0 = all training, 1.0 = all validation) default = 0.5");
MandatoryOff("vtr");
SetParameterFloat("vtr", 0.5);
AddParameter(ParameterType_Empty, "opt", "Use SVM parameters optimization");
AddParameter(ParameterType_Empty, "opt", "parameters optimization");
MandatoryOff("opt");
SetParameterDescription("opt","SVM parameters optimization");
AddParameter(ParameterType_Filename, "vfn",
"Name of the field using to discriminate class in the vector data files");
"Name of the discrimination field");
MandatoryOff("vfn");
SetParameterDescription("vfn", "Name of the field using to discriminate class in the vector data files");
SetParameterString("vfn", "Class");
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment