Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
otb
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Youssefi
otb
Commits
8b75014e
Commit
8b75014e
authored
13 years ago
by
Manuel Grizonnet
Browse files
Options
Downloads
Patches
Plain Diff
DOC:typo in MDMD doxygen class documentation
parent
0f08b698
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Code/Hyperspectral/otbMDMDNMFImageFilter.h
+35
-35
35 additions, 35 deletions
Code/Hyperspectral/otbMDMDNMFImageFilter.h
with
35 additions
and
35 deletions
Code/Hyperspectral/otbMDMDNMFImageFilter.h
+
35
−
35
View file @
8b75014e
...
...
@@ -37,49 +37,49 @@ namespace otb
* M. G. A. Huck and J. Blanc-Talon, IEEE TGRS, vol. 48, no. 6, pp. 2590-2602, 2010.
* A. Huck and M. Guillaume, in WHISPERS, 2010, Grenoble.
*
* Let \f$ \matR \f$ be the matrix of the hyperspectral data, whose
* Let \f$ \mat
hbf
R \f$ be the matrix of the hyperspectral data, whose
* \f$ I \f$ columns are the
* spectral pixels and the \f$ L \f$ rows are the vectorial spectral band
* images. The linear mixing model can be written as follow :
* \f$ \begin{equation}
* \matR=\matA \matS + \matN= \matX + \matN
* \mat
hbf
R=\mat
hbf
A \mat
hbf
S + \mat
hbf
N= \mat
hbf
X + \mat
hbf
N
* \end{equation} \f$
* The \f$ I \f$ columns of \f$ \matR \f$ contain the spectral pixels
* and the \f$ I \f$ columns of \f$ \matS \f$ hold their respective sets of abundance
* fractions. The \f$ J \f$ rows of \f$ \matS \f$ are the abundance maps
* The \f$ I \f$ columns of \f$ \mat
hbf
R \f$ contain the spectral pixels
* and the \f$ I \f$ columns of \f$ \mat
hbf
S \f$ hold their respective sets of abundance
* fractions. The \f$ J \f$ rows of \f$ \mat
hbf
S \f$ are the abundance maps
* corresponding to the respective end-members. The \f$ J \f$ columns of
* \f$ \matA \f$ are the end members spectra, and \f$ \matX \f$ is the signal
* matrix. Both \f$ \matA \f$ and \f$ \matS \f$ are unknown.
* \f$ \mat
hbf
A \f$ are the end members spectra, and \f$ \mat
hbf
X \f$ is the signal
* matrix. Both \f$ \mat
hbf
A \f$ and \f$ \mat
hbf
S \f$ are unknown.
*
* The basic NMF formulation is to find two matrices \f$ \hat{\matA} \f$ and
* \f$ \hat{ \matS} \f$ such as:
* The basic NMF formulation is to find two matrices \f$ \hat{\mat
hbf
A} \f$ and
* \f$ \hat{ \mat
hbf
S} \f$ such as:
* \f$ \begin{equation}
* \matX\simeq \hat{\matA} \hat{\matS}
* \mat
hbf
X\simeq \hat{\mat
hbf
A} \hat{\mat
hbf
S}
* \end{equation} \f$
* NMF based algorithms consider the
* properties of the dual spaces \f$ span^+(\matA')\f$ and
* \f$ span^+(\matS) \f$, in
* which \f$ span^+(\mathbf m^1 ...\mathbf m^d)=\{\mathbf v=\sum_i \mathbf
* m^i\mathbf a_i|\mathbf a\in \matR _+^d\} \f$. The
* properties of the dual spaces \f$ span^+(\mat
hbf
A')\f$ and
* \f$ span^+(\mat
hbf
S) \f$, in
* which \f$ span^+(\mathbf
hbf
m^1 ...\mathbf
hbf
m^d)=\{\mathbf
hbf
v=\sum_i \mathbf
hbf
* m^i\mathbf
hbf
a_i|\mathbf
hbf
a\in \mat
hbf
R _+^d\} \f$. The
* positiveness is then a fundamental assumption and is exploited to
* restrict the admissible solutions set.
*
* A common used solution is to minimize the reconstruction quadratic
* error :
* \f$ RQE({\matA}, {\matS})=\|\matR-{\matA} {\matS}\|^2_F \f$. In order to
* \f$ RQE({\mat
hbf
A}, {\mat
hbf
S})=\|\mat
hbf
R-{\mat
hbf
A} {\mat
hbf
S}\|^2_F \f$. In order to
* satisfy the sum-to-one constraint for hyperspectral data, a
* regularization term \f$ STU(\matS) \f$ can be added to the objective
* regularization term \f$ STU(\mat
hbf
S) \f$ can be added to the objective
* function.
*
* A generic expression for the optimized function is \f$
* f(\matA,\matS)=\|\matA \matS-\matR\|_{norm}+\sum_i \lambda_i
* D_i(\matA) + \sum_j \lambda_j D_j(\matS) \f$ in which \f$ \|\matA
* \matS-\matR\|_{norm} \f$ is the connection-to-the-data term, and
* f(\mat
hbf
A,\mat
hbf
S)=\|\mat
hbf
A \mat
hbf
S-\mat
hbf
R\|_{norm}+\sum_i \lambda_i
* D_i(\mat
hbf
A) + \sum_j \lambda_j D_j(\mat
hbf
S) \f$ in which \f$ \|\mat
hbf
A
* \mat
hbf
S-\mat
hbf
R\|_{norm} \f$ is the connection-to-the-data term, and
* \f$ \lambda_{\{i, j\}} \f$ are regularization parameters for end members and
* abundances constraints \f$ D_{\{i, j\}} \f$.
* Huck
* propose an other regularization term,
* \f$ D_A(\matA)=Tr(\matA^T\matA)-\frac{1}{L}Tr\left ( \matA^T \1_{LL}\matA
* \f$ D_A(\mat
hbf
A)=Tr(\mat
hbf
A^T\mat
hbf
A)-\frac{1}{L}Tr\left ( \mat
hbf
A^T \1_{LL}\mat
hbf
A
* \right) \f$, which ensures low spectral dispersion on endmembers.
* The physical
* motivation is based on the assuption that in most situations, the
...
...
@@ -87,9 +87,9 @@ namespace otb
* selectively in multiple piece-wise convex sets. As a consequence, the mean value of the abundance,
* \f$ \frac{1}{J} \f$, is the least likely one. The maximum abundance
* dispersion condition is given by
* \f$ D_s(\matS)=-\|\matS-\frac{1}{J}\1_{JI}\|^2_F \f$. MDMD-NMF algorithm
* minimizes the following function \f$ f(\matA,\matS) =RQE(\matA,
* \matS)+\delta.STU(\matS)+\lambda_A D_A(\matA)-\lambda_S D_S(\matS)
* \f$ D_s(\mat
hbf
S)=-\|\mat
hbf
S-\frac{1}{J}\1_{JI}\|^2_F \f$. MDMD-NMF algorithm
* minimizes the following function \f$ f(\mat
hbf
A,\mat
hbf
S) =RQE(\mat
hbf
A,
* \mat
hbf
S)+\delta.STU(\mat
hbf
S)+\lambda_A D_A(\mat
hbf
A)-\lambda_S D_S(\mat
hbf
S)
* \f$,
* \f$ STU \f$ the sum-to-one constraint.
*
...
...
@@ -98,24 +98,24 @@ namespace otb
* iterations, or else on alternate least square methods. In MDMD-NMF, the update rules
* at each iteration become :
* \f$ \begin{eqnarray}
* \label{algomdmd} \matS&\leftarrow &P\left [\matS-\mu_S \left( \bar \matA^T
* (\bar\matA\matS-\bar\matR)-\lambda_S(\matS-\frac{1}{J}\1_{JI})\right)\right
* ]\\ \nonumber \matA &\leftarrow &P\left [\matA-\mu_A \left(
* (\matA\matS-\matR)\matS^T +\lambda_A(\matA-\frac{1}{L}\ \mathbf
* 1_{LL}\matA)\right)\right ]
* \label{algomdmd} \mat
hbf
S&\leftarrow &P\left [\mat
hbf
S-\mu_S \left( \bar \mat
hbf
A^T
* (\bar\mat
hbf
A\mat
hbf
S-\bar\mat
hbf
R)-\lambda_S(\mat
hbf
S-\frac{1}{J}\1_{JI})\right)\right
* ]\\ \nonumber \mat
hbf
A &\leftarrow &P\left [\mat
hbf
A-\mu_A \left(
* (\mat
hbf
A\mat
hbf
S-\mat
hbf
R)\mat
hbf
S^T +\lambda_A(\mat
hbf
A-\frac{1}{L}\ \mathbf
hbf
* 1_{LL}\mat
hbf
A)\right)\right ]
* \end{eqnarray} \f$
* where \f$ \mu_A\f$ and \f$\mu_S \f$
* are the step sizes.
* Huck propose a
* multiscale method to determine the coefficients \f$ \mu_A \f$ and
* \f$ \mu_S \f$. The projection operator \f$ P \f$ at each step ensures the
* positivity constraint for \f$ \matA \f$ and \f$ \matS \f$, and \f$
* \bar\matR \f$ and
* \f$ \bar\matA \f$ include the sum-to-one constraint:
* \f$ \bar\matR=\left[
* \begin{array}{c} \matR \\
* \delta\cdot\1_{1I}\end{array}\right],\enspace \bar\matA=\left[
* \begin{array}{c} \matA \\
* positivity constraint for \f$ \mat
hbf
A \f$ and \f$ \mat
hbf
S \f$, and \f$
* \bar\mat
hbf
R \f$ and
* \f$ \bar\mat
hbf
A \f$ include the sum-to-one constraint:
* \f$ \bar\mat
hbf
R=\left[
* \begin{array}{c} \mat
hbf
R \\
* \delta\cdot\1_{1I}\end{array}\right],\enspace \bar\mat
hbf
A=\left[
* \begin{array}{c} \mat
hbf
A \\
* \delta\cdot\1_{1J}\end{array}\right]\enspace \f$.
*
* \ingroup ImageFilters
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment