Skip to content
Snippets Groups Projects
Commit 968b99ee authored by Jordi Inglada's avatar Jordi Inglada
Browse files

DOC: non working dratf of the SIFT disparity map example

parent 61968377
Branches
Tags
No related merge requests found
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif
// Software Guide : BeginCommandLineArgs
// INPUTS: {ROI_IKO_PAN_LesHalles_pos_spacing.tif}, {ROI_IKO_PAN_LesHalles_warped_pos_spacing.tif}
// OUTPUTS: {SIFTdeformationFieldOutput.png},{SIFTresampledMovingOutput.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example demonstrates the use of the
// \doxygen{otb}{KeyPointSetsMatchingFilter} for disparity map
// estimation. The idea here is to match SIFTs extracted from both the
// fixed and the moving images. The use of SIFTs is demonstrated in
// section \ref{sec:SIFTDetector}. The
// \doxygen{otb}{NearestPointDeformationFieldGenerator} will be used
// to generate a deformation field by using nearest neighbor
// interpolation on the deformation values from the point set. More
// advanced methods for deformation field interpolation are also
// available.
//
// The first step toward the use of these filters is to include the proper header files.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbKeyPointSetsMatchingFilter.h"
#include "otbNearestPointDeformationFieldGenerator.h"
#include "itkWarpImageFilter.h"
// Software Guide : EndCodeSnippet
#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
int main (int argc, char* argv[])
{
if(argc!= 5)
{
std::cerr <<"Usage: "<<argv[0];
std::cerr<<"fixedFileName movingFileName fieldOutName imageOutName " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
// Software Guide : BeginLatex
//
// Then we must decide what pixel type to use for the image. We choose to do
// all the computation in floating point precision and rescale the results
// between 0 and 255 in order to export PNG images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef double RealType;
typedef unsigned char OutputPixelType;
typedef otb::Image<RealType,Dimension> ImageType;
typedef otb::Image<OutputPixelType,Dimension> OutputImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The SIFTs obtained for the matching will be stored in vector
// form inside a point set. So we need the following types:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::VariableLengthVector<RealType> RealVectorType;
typedef itk::PointSet<RealVectorType,Dimension> PointSetType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filter for computing the SIFTs has a type defined as follows:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::SiftFastImageFilter<ImageType,PointSetType> ImageToSIFTKeyPointSetFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Although many choices for evaluating the distances during the
// matching procedure exist, we choose here to use a simple
// Euclidean distance. We can then define the type for the matching filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::EuclideanDistance<RealVectorType> DistanceType;
typedef otb::KeyPointSetsMatchingFilter<PointSetType, DistanceType>
EuclideanDistanceMatchingFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following types are needed for dealing with the matched points.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef PointSetType::PointType PointType;
typedef std::pair<PointType,PointType> MatchType;
typedef std::vector<MatchType> MatchVectorType;
typedef EuclideanDistanceMatchingFilterType::LandmarkListType LandmarkListType;
typedef PointSetType::PointsContainer PointsContainerType;
typedef PointsContainerType::Iterator PointsIteratorType;
typedef PointSetType::PointDataContainer PointDataContainerType;
typedef PointDataContainerType::Iterator PointDataIteratorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We define the type for the image reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileReader<ImageType> ReaderType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Two readers are instantiated : one for the fixed image, and one for the moving image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType::Pointer fixedReader = ReaderType::New();
ReaderType::Pointer movingReader = ReaderType::New();
fixedReader->SetFileName(argv[1]);
movingReader->SetFileName(argv[2]);
fixedReader->UpdateOutputInformation();
movingReader->UpdateOutputInformation();
// Software Guide : EndCodeSnippet
ImageToSIFTKeyPointSetFilterType::Pointer filter1 = ImageToSIFTKeyPointSetFilterType::New();
ImageToSIFTKeyPointSetFilterType::Pointer filter2 = ImageToSIFTKeyPointSetFilterType::New();
EuclideanDistanceMatchingFilterType::Pointer euclideanMatcher = EuclideanDistanceMatchingFilterType::New();
euclideanMatcher->SetInput1(filter1->GetOutput());
euclideanMatcher->SetInput2(filter2->GetOutput());
euclideanMatcher->SetDistanceThreshold(secondOrderThreshold);
euclideanMatcher->SetUseBackMatching(useBackMatching);
LandmarkListType::Pointer landmarkList;
euclideanMatcher->Update();
MatchVectorType trueSecondOrder;
for(LandmarkListType::Iterator it = landmarkList->Begin(); it != landmarkList->End();++it)
{
PointType point1 = it.Get()->GetPoint1();
PointType point2 = it.Get()->GetPoint2();
trueSecondOrder.push_back(MatchType(point1,point2));
}
// Displaying the matches
typedef otb::PrintableImageFilter<VectorImageType> PrintableFilterType;
typedef PrintableFilterType::OutputImageType OutputImageType;
PrintableFilterType::Pointer printable1 = PrintableFilterType::New();
PrintableFilterType::Pointer printable2 = PrintableFilterType::New();
printable1->SetInput(inputImage1);
printable1->SetChannel(3);
printable1->SetChannel(2);
printable1->SetChannel(1);
printable1->Update();
printable2->SetInput(inputImage2);
printable2->SetChannel(3);
printable2->SetChannel(2);
printable2->SetChannel(1);
printable2->Update();
// Always the same VariableLenghtVector compatibility problem ...
typedef otb::Image<itk::RGBPixel<unsigned char>,2> RGBImageType;
RGBImageType::Pointer rgbimage1 = RGBImageType::New();
rgbimage1->SetRegions(printable1->GetOutput()->GetLargestPossibleRegion());
rgbimage1->Allocate();
itk::ImageRegionIterator<RGBImageType> outIt1(rgbimage1,rgbimage1->GetLargestPossibleRegion());
itk::ImageRegionIterator<OutputImageType> inIt1(printable1->GetOutput(),printable1->GetOutput()->GetLargestPossibleRegion());
outIt1.GoToBegin();
inIt1.GoToBegin();
while(!inIt1.IsAtEnd() && !outIt1.IsAtEnd())
{
itk::RGBPixel<unsigned char> pixel;
pixel.SetRed(inIt1.Get()[0]);
pixel.SetGreen(inIt1.Get()[1]);
pixel.SetBlue(inIt1.Get()[2]);
outIt1.Set(pixel);
++inIt1;
++outIt1;
}
RGBImageType::Pointer rgbimage2 = RGBImageType::New();
rgbimage2->SetRegions(printable2->GetOutput()->GetLargestPossibleRegion());
rgbimage2->Allocate();
itk::ImageRegionIterator<RGBImageType> outIt2(rgbimage2,rgbimage2->GetLargestPossibleRegion());
itk::ImageRegionIterator<OutputImageType> inIt2(printable2->GetOutput(),printable2->GetOutput()->GetLargestPossibleRegion());
outIt2.GoToBegin();
inIt2.GoToBegin();
while(!inIt2.IsAtEnd() && !outIt2.IsAtEnd())
{
itk::RGBPixel<unsigned char> pixel;
pixel.SetRed(inIt2.Get()[0]);
pixel.SetGreen(inIt2.Get()[1]);
pixel.SetBlue(inIt2.Get()[2]);
outIt2.Set(pixel);
++inIt2;
++outIt2;
}
// Software Guide : BeginLatex
//
// Once the estimation has been performed by the \doxygen{otb}{DisparityMapEstimationMethod}, one can generate
// the associated deformation field (that means translation in first and second image direction).
// It will be represented as a \doxygen{otb}{VectorImage}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::VectorImage<PixelType,Dimension> DeformationFieldType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// For the deformation field estimation, we will use the \doxygen{otb}{NearestPointDeformationFieldGenerator}.
// This filter will perform a nearest neighbor interpolation on the deformation values in the point set data.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::NearestPointDeformationFieldGenerator<PointSetType,
DeformationFieldType> GeneratorType;
// Software GUide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The disparity map estimation filter is instanciated.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
GeneratorType::Pointer generator = GeneratorType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We must then specify the input point set using the \code{SetPointSet()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
generator->SetPointSet(dmestimator->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// One must also specify the origin, size and spacing of the output deformation field.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
generator->SetOutputOrigin(fixedReader->GetOutput()->GetOrigin());
generator->SetOutputSpacing(fixedReader->GetOutput()->GetSpacing());
generator->SetOutputSize(fixedReader->GetOutput()
->GetLargestPossibleRegion().GetSize());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The local registration process can lead to wrong deformation values and transform parameters. To Select only
// points in point set for which the registration process was succesful, one can set a threshold on the final metric
// value : points for which the absolute final metric value is below this threshold will be discarded. This
// threshold can be set with the \code{SetMetricThreshold()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
generator->SetMetricThreshold(atof(argv[11]));
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \relatedClasses
// \begin{itemize}
// \item \doxygen{otb}{NNearestPointsLinearInterpolateDeformationFieldGenerator}
// \item \doxygen{otb}{BSplinesInterpolateDeformationFieldGenerator}
// \item \doxygen{otb}{NearestTransformDeformationFieldGenerator}
// \item \doxygen{otb}{NNearestTransformsLinearInterpolateDeformationFieldGenerator}
// \item \doxygen{otb}{BSplinesInterpolateTransformDeformationFieldGenerator}
// \end{itemize}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Now we can warp our fixed image according to the estimated deformation field. This will be performed by the
// \doxygen{itk}{WarpImageFilter}. First, we define this filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::WarpImageFilter<ImageType,ImageType,
DeformationFieldType> ImageWarperType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we instantiate it.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageWarperType::Pointer warper = ImageWarperType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the input image to warp using the \code{SetInput()} method, and the deformation field
// using the \code{SetDeformationField()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
warper->SetInput(movingReader->GetOutput());
warper->SetDeformationField(generator->GetOutput());
warper->SetOutputOrigin(fixedReader->GetOutput()->GetOrigin());
warper->SetOutputSpacing(fixedReader->GetOutput()->GetSpacing());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In order to write the result to a PNG file, we will rescale it on a proper range.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RescaleIntensityImageFilter<ImageType,
OutputImageType> RescalerType;
RescalerType::Pointer outputRescaler = RescalerType::New();
outputRescaler->SetInput(warper->GetOutput());
outputRescaler->SetOutputMaximum(255);
outputRescaler->SetOutputMinimum(0);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now write the image to a file. The filters are executed by invoking
// the \code{Update()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileWriter<OutputImageType> WriterType;
WriterType::Pointer outputWriter = WriterType::New();
outputWriter->SetInput(outputRescaler->GetOutput());
outputWriter->SetFileName(argv[4]);
outputWriter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also want to write the deformation field along the first direction to a file.
// To achieve this we will use the \doxygen{otb}{MultiToMonoChannelExtractROI} filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::MultiToMonoChannelExtractROI<PixelType,
PixelType> ChannelExtractionFilterType;
ChannelExtractionFilterType::Pointer channelExtractor
= ChannelExtractionFilterType::New();
channelExtractor->SetInput(generator->GetOutput());
channelExtractor->SetChannel(1);
RescalerType::Pointer fieldRescaler = RescalerType::New();
fieldRescaler->SetInput(channelExtractor->GetOutput());
fieldRescaler->SetOutputMaximum(255);
fieldRescaler->SetOutputMinimum(0);
WriterType::Pointer fieldWriter = WriterType::New();
fieldWriter->SetInput(fieldRescaler->GetOutput());
fieldWriter->SetFileName(argv[3]);
fieldWriter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Figure~\ref{fig:SIMPLEDISPARITYMAPESTIMATIONOUTPUT} shows the result of applying disparity map estimation on
// a regular point set, followed by deformation field estimation and fixed image resampling on an Ikonos image.
// The moving image is the fixed image warped with a sinusoidal deformation with a 3-pixels amplitude and a 170-pixels
// period. Please note that there are more efficient ways to interpolate the deformation field than nearest neighbor,
// including BSplines fitting.
//
// \begin{figure}
// \center
// \includegraphics[width=0.40\textwidth]{ROI_IKO_PAN_LesHalles_pos_spacing.eps}
// \includegraphics[width=0.40\textwidth]{ROI_IKO_PAN_LesHalles_warped_pos_spacing.eps}
// \includegraphics[width=0.40\textwidth]{SIFTdeformationFieldOutput.eps}
// \includegraphics[width=0.40\textwidth]{SIFTresampledMovingOutput.eps}
// \itkcaption[Deformation field and resampling from disparity map estimation]{From left
// to right and top to bottom: fixed input image, moving image with a sinusoid deformation,
// estimated deformation field in the horizontal direction, resampled moving image.}
// \label{fig:SIMPLEDISPARITYMAPESTIMATIONOUTPUT}
// \end{figure}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment