Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
otb
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Youssefi
otb
Commits
b3c618e1
Commit
b3c618e1
authored
18 years ago
by
Jordi Inglada
Browse files
Options
Downloads
Patches
Plain Diff
Example SOM
parent
49e6d304
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Examples/Learning/CMakeLists.txt
+3
-0
3 additions, 0 deletions
Examples/Learning/CMakeLists.txt
Examples/Learning/SOMExample.cxx
+418
-0
418 additions, 0 deletions
Examples/Learning/SOMExample.cxx
with
421 additions
and
0 deletions
Examples/Learning/CMakeLists.txt
+
3
−
0
View file @
b3c618e1
...
...
@@ -29,6 +29,9 @@ ADD_EXECUTABLE(SVMImageEstimatorClassificationMultiExample SVMImageEstimatorClas
TARGET_LINK_LIBRARIES
(
SVMImageEstimatorClassificationMultiExample ITKIO OTBIO
OTBCommon ITKCommon OTBLearning gdal
)
ADD_EXECUTABLE
(
SOMExample SOMExample.cxx
)
TARGET_LINK_LIBRARIES
(
SOMExample ITKIO OTBIO OTBCommon ITKCommon OTBLearning gdal
)
IF
(
NOT OTB_DISABLE_CXX_TESTING
)
...
...
This diff is collapsed.
Click to expand it.
Examples/Learning/SOMExample.cxx
0 → 100644
+
418
−
0
View file @
b3c618e1
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {ROI_QB_MUL_1.png}
// OUTPUTS: {ROI_QB_MUL_SOM.png}, {ROI_QB_MUL_SOMACT.png}
// 8 8 8 8 20 1.0 0.1 128
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
// This example illustrates the use of the
// \doxygen{otb}{SOM} class for building Kohonen's Self Organizing
// Maps.
// The first thing to do is include the header file for the
// class. We will also need the header files for the map itself and
// the activation map builder whose utility will be explained at the
// end of the example.
//
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include
"otbSOMMap.h"
#include
"otbSOM.h"
#include
"otbSOMActivationBuilder.h"
// Software Guide : EndCodeSnippet
#include
"itkExceptionObject.h"
#include
"otbImage.h"
#include
"itkRGBPixel.h"
#include
"itkVectorExpandImageFilter.h"
#include
"itkVectorNearestNeighborInterpolateImageFunction.h"
#include
"itkExpandImageFilter.h"
#include
"itkNearestNeighborInterpolateImageFunction.h"
// Software Guide : BeginLatex
// Since the \doxygen{otb}{SOM} class uses a distance, we will need to
// include the header file for the one we want to use
//
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include
"itkEuclideanDistance.h"
// Software Guide : EndCodeSnippet
#include
"otbImageFileReader.h"
#include
"otbImageFileWriter.h"
#include
"itkImageToListAdaptor.h"
int
main
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
12
)
{
std
::
cout
<<
"Usage: "
<<
argv
[
0
]
<<
"inputImage outputMap activationMap"
;
std
::
cout
<<
"sizeX sizeY neighborX neighborY iterations "
;
std
::
cout
<<
"beta0 betaEnd initValue"
<<
std
::
endl
;
return
1
;
}
char
*
inputFileName
=
argv
[
1
];
char
*
outputFileName
=
argv
[
2
];
char
*
actMapFileName
=
argv
[
3
];
unsigned
int
sizeX
=
atoi
(
argv
[
4
]);
unsigned
int
sizeY
=
atoi
(
argv
[
5
]);
unsigned
int
neighInitX
=
atoi
(
argv
[
6
]);
unsigned
int
neighInitY
=
atoi
(
argv
[
7
]);
unsigned
int
nbIterations
=
atoi
(
argv
[
8
]);
double
betaInit
=
atof
(
argv
[
9
]);
double
betaEnd
=
atof
(
argv
[
10
]);
float
initValue
=
atof
(
argv
[
11
]);
// Software Guide : BeginLatex
//
// The Self Organizing Map itself is actually an N-dimensional image
// where each pixel contains a neuron. In our case, we decide to build
// a 2-dimensional SOM, where the neurons store RGB values with
// floating point precision.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
unsigned
int
Dimension
=
2
;
typedef
unsigned
char
ComponentType
;
typedef
itk
::
RGBPixel
<
ComponentType
>
PixelType
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The distance that we want to apply between the RGB values is the
// Euclidean one. Of course we could choose to use other type of
// distance, as for instance, a distance defined in any other color space.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk
::
Statistics
::
EuclideanDistance
<
PixelType
>
DistanceType
;
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// We can now define the type for the map. The \doxygen{otb}{SOMMap}
// class is templated over the neuron type -- \code{PixelType} here
// --, the distance type and the number of dimensions. Note that the
// number of dimensions of the map could be different from the one of
// the images to be processed.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
otb
::
SOMMap
<
PixelType
,
DistanceType
,
Dimension
>
MapType
;
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// We are going to perform the learning directly on the pixels of the
// input image. Therefore, the image type is defined using the same
// pixel type as we used for the map. We also define the type for the
// imge file reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
otb
::
Image
<
PixelType
,
Dimension
>
ImageType
;
typedef
otb
::
ImageFileReader
<
ImageType
>
ReaderType
;
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// Since the \doxygen{otb}{SOM} class works on lists of samples, it
// will need to access the input image through an adaptor. Its type is
// defined as follows:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk
::
Statistics
::
ImageToListAdaptor
<
ImageType
>
ListAdaptorType
;
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// We can now define the type for the SOM, which is templated over the
// input sample list and the type of the map to be produced.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
otb
::
SOM
<
ListAdaptorType
,
MapType
>
SOMType
;
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// Since the map is itself an image, we can write it to disk with an
// \doxygen{otb}{ImageFileWriter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
otb
::
ImageFileWriter
<
MapType
>
WriterType
;
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// We can now start building the pipeline. The first step is to
// instantiate the reader and pass its output to the adaptor.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType
::
Pointer
reader
=
ReaderType
::
New
();
reader
->
SetFileName
(
inputFileName
);
reader
->
Update
();
ListAdaptorType
::
Pointer
adaptor
=
ListAdaptorType
::
New
();
adaptor
->
SetImage
(
reader
->
GetOutput
());
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// We can now instantiate the SOM algorithm and set the sample list as input.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SOMType
::
Pointer
som
=
SOMType
::
New
();
som
->
SetListSample
(
adaptor
);
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// We use a \code{SOMType::SizeType} array in order to set the sizes
// of the map.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SOMType
::
SizeType
size
;
size
[
0
]
=
sizeX
;
size
[
1
]
=
sizeY
;
som
->
SetMapSize
(
size
);
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// The initial size of the neighborhood of each neuron is set in the
// same way.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SOMType
::
SizeType
radius
;
radius
[
0
]
=
neighInitX
;
radius
[
1
]
=
neighInitY
;
som
->
SetNeighborhoodSizeInit
(
radius
);
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// The other parameters are the number of iterations, the initial and
// the final values for the learning rate -- $\beta$ -- and the
// maximum initial value for the neurons (the map will be randomly
// initialized).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
som
->
SetNumberOfIterations
(
nbIterations
);
som
->
SetBetaInit
(
betaInit
);
som
->
SetBetaEnd
(
betaEnd
);
som
->
SetMaxWeight
(
static_cast
<
ComponentType
>
(
initValue
));
// Software Guide : EndCodeSnippet
//
// Software Guide : BeginLatex
//
// Finally, we set up the las part of the pipeline where the plug the
// output of the SOM into the writer. The learning procedure is
// triggered by calling the \code{Update()} method on the writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType
::
Pointer
writer
=
WriterType
::
New
();
writer
->
SetFileName
(
outputFileName
);
writer
->
SetInput
(
som
->
GetOutput
());
writer
->
Update
();
// Software Guide : EndCodeSnippet
//Just for visualization purposes, we zoom the image.
typedef
itk
::
VectorExpandImageFilter
<
MapType
,
MapType
>
ExpandType
;
typedef
itk
::
VectorNearestNeighborInterpolateImageFunction
<
MapType
,
double
>
InterpolatorType
;
InterpolatorType
::
Pointer
interpolator
=
InterpolatorType
::
New
();
ExpandType
::
Pointer
expand
=
ExpandType
::
New
();
expand
->
SetInput
(
som
->
GetOutput
());
expand
->
SetExpandFactors
(
20
);
expand
->
SetInterpolator
(
interpolator
);
PixelType
pix
;
pix
[
0
]
=
255
;
pix
[
1
]
=
255
;
pix
[
2
]
=
255
;
expand
->
SetEdgePaddingValue
(
pix
);
writer
->
SetInput
(
expand
->
GetOutput
());
writer
->
Update
();
// Software Guide : BeginLatex
// Figure \ref{fig:SOMMAP} shows the result of the SOM learning. Since
// we have performed a learning on RGB pixel values, the produced SOM
// can be interpreted as an optimal color table for the input image.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{ROI_QB_MUL_1.eps}
// \includegraphics[width=0.2\textwidth]{ROI_QB_MUL_SOM.eps}
// \includegraphics[width=0.2\textwidth]{ROI_QB_MUL_SOMACT.eps}
// \itkcaption[SOM Image Classification]{Result of the SOM
// learning. Left: RGB image. Center: SOM. Right: Activation map}
// \label{fig:SOMMAP}
// \end{figure}
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// We can now compute the activation map for the input image. The
// activation map tells us how many times a given neuron is activated
// for the set of examples given to the map. The activation map is
// stored as a scalar image and an integer pixel type is usually enough.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
unsigned
char
OutputPixelType
;
typedef
otb
::
Image
<
OutputPixelType
,
Dimension
>
OutputImageType
;
typedef
otb
::
ImageFileWriter
<
OutputImageType
>
ActivationWriterType
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In a similar way to the \doxygen{otb}{SOM} class the
// \doxygen{otb}{SOMActivationBuilder} is templated over the sample
// list given as input, the SOM map type and the activation map to be
// built as output.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
otb
::
SOMActivationBuilder
<
ListAdaptorType
,
MapType
,
OutputImageType
>
SOMActivationBuilderType
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate the activation map builder and set as input the SOM
// map build before and the image (using the adaptor).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SOMActivationBuilderType
::
Pointer
somAct
=
SOMActivationBuilderType
::
New
();
somAct
->
SetInput
(
som
->
GetOutput
());
somAct
->
SetListSample
(
adaptor
);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The final step is to write the activation map to a file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ActivationWriterType
::
Pointer
actWriter
=
ActivationWriterType
::
New
();
actWriter
->
SetFileName
(
actMapFileName
);
actWriter
->
SetInput
(
somAct
->
GetOutput
());
actWriter
->
Update
();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
// The righthand side of figure \ref{fig:SOMMAP} shows the activation
// map obtained.
//
// Software Guide : EndLatex
//Just for visualization purposes, we zoom the image.
typedef
itk
::
ExpandImageFilter
<
OutputImageType
,
OutputImageType
>
ExpandType2
;
typedef
itk
::
NearestNeighborInterpolateImageFunction
<
OutputImageType
,
double
>
InterpolatorType2
;
InterpolatorType2
::
Pointer
interpolator2
=
InterpolatorType2
::
New
();
ExpandType2
::
Pointer
expand2
=
ExpandType2
::
New
();
expand2
->
SetInput
(
somAct
->
GetOutput
());
expand2
->
SetExpandFactors
(
20
);
expand2
->
SetInterpolator
(
interpolator2
);
expand2
->
SetEdgePaddingValue
(
255
);
actWriter
->
SetInput
(
expand2
->
GetOutput
());
actWriter
->
Update
();
return
EXIT_SUCCESS
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment