Skip to content
Snippets Groups Projects
Commit bcbb714c authored by Emmanuel Christophe's avatar Emmanuel Christophe
Browse files

Merge branch 'doxygencorrections' of http://emmanuel@melaneum.com/otb-lib-repo...

Merge branch 'doxygencorrections' of http://emmanuel@melaneum.com/otb-lib-repo into doxygencorrections
parent 81611575
Branches
Tags
No related merge requests found
...@@ -35,10 +35,10 @@ public: ...@@ -35,10 +35,10 @@ public:
* \subdoxygen{otb}{KullbackLeiblerProfileImageFilter}. * \subdoxygen{otb}{KullbackLeiblerProfileImageFilter}.
* *
* It is implemented as a polynomial kernel: * It is implemented as a polynomial kernel:
* $\exp - \left( \gamma \left( \max_i | x_i - y_i | \right)^\text{degree} + \text{coef} \right)$. * $\exp - \left( \gamma \left( \max_i | x_i - y_i | \right)^\textrm{degree} + \textrm{coef} \right)$.
* *
* The parameters $\gamma$, $\text{coef}$ and $\text{degree}$ are * The parameters $\gamma$, $\textrm{coef}$ and $\textrm{degree}$ are
* to be fixed through \code{SetValue} with keywords: Gamma (def 1.0), * to be fixed through \code SetValue \endcode with keywords: Gamma (def 1.0),
* Coef (def 1.0) and Degree (def 1.0). * Coef (def 1.0) and Degree (def 1.0).
*/ */
double operator() ( const svm_node * x, const svm_node * y, double operator() ( const svm_node * x, const svm_node * y,
...@@ -47,7 +47,7 @@ public: ...@@ -47,7 +47,7 @@ public:
ChangeProfileKernelFunctor (); ChangeProfileKernelFunctor ();
virtual ~ChangeProfileKernelFunctor () { } virtual ~ChangeProfileKernelFunctor () { }
/** Specific implementation of \code{Update} to split m_MapParameters /** Specific implementation of \code Update \endcode to split m_MapParameters
* into specific variables to speed up kernel evaluations */ * into specific variables to speed up kernel evaluations */
void Update (); void Update ();
......
...@@ -36,21 +36,21 @@ namespace Functor { ...@@ -36,21 +36,21 @@ namespace Functor {
* PhD dissertation, University of Rennes I, Rennes, France. May 5th, 1999. * PhD dissertation, University of Rennes I, Rennes, France. May 5th, 1999.
* *
* Its behavior is decomposed into two steps depending on the number of iterations: * Its behavior is decomposed into two steps depending on the number of iterations:
* \f{equation*} * \f[
\beta = \begn{cases} \beta =
\beta_0 \left( 1 - \frac{t}{t_0} \right) & \text{ if $t < t_0$} \\ \begin{cases} \beta_0 \left( 1 - \frac{t}{t_0} \right) & \textrm{ if $t < t_0$}
\beta_{\text{end}} \left( 1- \frac{t-t_O}{t_{\text{end}}-t_0} \right) \\
& \text{ if $ t_0 \leqslant t < t_{\text{end}}$} \beta_{\textrm{end}} \left( 1- \frac{t-t_O}{t_{\textrm{end}}-t_0} \right) & \textrm{ if $ t_0 \leqslant t < t_{\textrm{end}}$}
\end{cases} \end{cases}
\f{equation*} \f]
where \f$ t_0 \f$ stands for IterationThreshold. * where \f$ t_0 \f$ stands for IterationThreshold.
* *
* CzihoSOMLearningBehaviorFunctor uses some parameters of the SOM class such as: * CzihoSOMLearningBehaviorFunctor uses some parameters of the SOM class such as:
* BetaInit, BetaEnd, NumberOfIterations, but also NeighborhoodSizeInit which may be * BetaInit, BetaEnd, NumberOfIterations, but also NeighborhoodSizeInit which may be
* (surprisingly) required for the IterationThreshold. * (surprisingly) required for the IterationThreshold.
* *
* The functor function uses \code{NumberOfIterations}, \code{BetaInit}, \code{BetaEnd} parameters, that is * The functor function uses \code NumberOfIterations \endcode, \code BetaInit \endcode, \code BetaEnd \endcode parameters, that is
* why it is necessary to call a specific method for \code{IterationThreshold} intialisation. * why it is necessary to call a specific method for \code IterationThreshold \endcode intialisation.
* *
* \sa SOM * \sa SOM
*/ */
......
...@@ -34,14 +34,14 @@ namespace Functor { ...@@ -34,14 +34,14 @@ namespace Functor {
* "Compression d'images et analyse de contenu par quantification vectorielle" * "Compression d'images et analyse de contenu par quantification vectorielle"
* PhD dissertation, University of Rennes I, Rennes, France. May 5th, 1999. * PhD dissertation, University of Rennes I, Rennes, France. May 5th, 1999.
* *
* The behavior of the radius r (\em ie. \code{SizeType} component 0, 1,...) is given by: * The behavior of the radius r (\em ie. \code SizeType \endcode component 0, 1,...) is given by:
* \f{equation*} * \f$
r = r_{\text{init}} \left( 1 - \frac{t}{t_{\text{end}}} \right)^2 r = r_{\textrm{init}} \left( 1 - \frac{t}{t_{\textrm{end}}} \right)^2
\f{equation*} \f$
* *
* CzihoSOMNeighborhoodBehaviorFunctor uses some parameters of the SOM class such as: * CzihoSOMNeighborhoodBehaviorFunctor uses some parameters of the SOM class such as:
* \code{NeighborhoodSizeInit}, \code{NumberOfIterations} which are parameters of the functor function. * \code NeighborhoodSizeInit \endcode, \code NumberOfIterations \endcode which are parameters of the functor function.
* \code{operator()} is templated with the dimension of the neighborhoodSize. * \code operator() \endcode is templated with the dimension of the neighborhoodSize.
* *
* \sa SOM * \sa SOM
*/ */
......
...@@ -35,7 +35,7 @@ public: ...@@ -35,7 +35,7 @@ public:
* polynomial kernel and * polynomial kernel and
* $k_2(x,y) = \exp\left( - \gamma_2 \| x-y\-^2 \right)$ an RBF one. * $k_2(x,y) = \exp\left( - \gamma_2 \| x-y\-^2 \right)$ an RBF one.
* *
* Variable to be instanciated (through \code{SetValue}) are: * Variable to be instanciated (through \code SetValue \endcode) are:
* Mixture (def=0.5), GammaPoly (def=1.0), CoefPoly (def=1.0), * Mixture (def=0.5), GammaPoly (def=1.0), CoefPoly (def=1.0),
* DegreePoly (def=2), GammaRBF (def=1.0) */ * DegreePoly (def=2), GammaRBF (def=1.0) */
double operator() ( const svm_node * x, const svm_node * y, double operator() ( const svm_node * x, const svm_node * y,
...@@ -44,7 +44,7 @@ public: ...@@ -44,7 +44,7 @@ public:
MixturePolyRBFKernelFunctor (); MixturePolyRBFKernelFunctor ();
virtual ~MixturePolyRBFKernelFunctor () { } virtual ~MixturePolyRBFKernelFunctor () { }
/** Specific implementation of \code{Update} to split m_MapParameters /** Specific implementation of \code Update \endcode to split m_MapParameters
* into specific variables to speed up kernel evaluations */ * into specific variables to speed up kernel evaluations */
void Update (); void Update ();
......
...@@ -37,7 +37,7 @@ public: ...@@ -37,7 +37,7 @@ public:
* where $0 \leqslant \alpha \leqslant 1$ and * where $0 \leqslant \alpha \leqslant 1$ and
* $0 \leqslant \beta \leqslant 2$. * $0 \leqslant \beta \leqslant 2$.
* *
* Variables to be instanciated (through \code{SetValue}) are: * Variables to be instanciated (through \code SetValue \endcode) are:
* Alpha (def=1), Beta (def=2) and Gamma (def 1.0). * Alpha (def=1), Beta (def=2) and Gamma (def 1.0).
* */ * */
double operator() ( const svm_node * x, const svm_node * y, double operator() ( const svm_node * x, const svm_node * y,
...@@ -46,7 +46,7 @@ public: ...@@ -46,7 +46,7 @@ public:
NonGaussianRBFKernelFunctor (); NonGaussianRBFKernelFunctor ();
virtual ~NonGaussianRBFKernelFunctor () { } virtual ~NonGaussianRBFKernelFunctor () { }
/** Specific implementation of \code{Update} to split m_MapParameters /** Specific implementation of \code Update \endcode to split m_MapParameters
* into specific variables to speed up kernel evaluations */ * into specific variables to speed up kernel evaluations */
void Update (); void Update ();
......
...@@ -38,10 +38,10 @@ namespace otb { ...@@ -38,10 +38,10 @@ namespace otb {
* computed from an initial radius, and to a certain learning factor, decreasing at each iteration. * computed from an initial radius, and to a certain learning factor, decreasing at each iteration.
* *
* The behavior of the neighborhood is given by a functor (templated) which parameter is the current * The behavior of the neighborhood is given by a functor (templated) which parameter is the current
* iteration. It returns a neighborhood of type \code{SizeType}. * iteration. It returns a neighborhood of type \code SizeType \endcode.
* *
* The behavior of the learning factor (hold by a beta variable) is given by an other functor * The behavior of the learning factor (hold by a beta variable) is given by an other functor
* which parameter is the current iteration. It returns a beta value of type \code{double}. * which parameter is the current iteration. It returns a beta value of type \code double \endcode.
* *
* The SOMMap produced as output can be either initialized with a constant custom value or randomly * The SOMMap produced as output can be either initialized with a constant custom value or randomly
* generated following a normal law. The seed for the random intialization can be modified. * generated following a normal law. The seed for the random intialization can be modified.
......
...@@ -38,7 +38,7 @@ namespace otb ...@@ -38,7 +38,7 @@ namespace otb
* computed from an initial radius, and to a certain learning factor, decreasing at each iteration. * computed from an initial radius, and to a certain learning factor, decreasing at each iteration.
* *
* The behavior of the neighborhood is given by a functor (templated) which parameter is the current * The behavior of the neighborhood is given by a functor (templated) which parameter is the current
* iteration. It returns a neighborhood of type \code{SizeType}. * iteration. It returns a neighborhood of type \code SizeType \endcode.
* *
* The behavior of the learning factor (hold by a beta variable) is given by an other functor * The behavior of the learning factor (hold by a beta variable) is given by an other functor
* which parameter is the current iteration. It returns a beta value of type double. * which parameter is the current iteration. It returns a beta value of type double.
......
...@@ -29,13 +29,13 @@ namespace Functor { ...@@ -29,13 +29,13 @@ namespace Functor {
/** \class SOMLearningBehaviorFunctor /** \class SOMLearningBehaviorFunctor
* \brief Classical Beta behavior over SOM training phase * \brief Classical Beta behavior over SOM training phase
* *
* This class implements an standart evolution of the $\beta$ weightening * This class implements an standart evolution of the \f$ \beta \f$ weightening
* coefficient over the SOM training. * coefficient over the SOM training.
* *
* \f{equation*} * \f$
\beta = \beta_0 + \left( \beta_{\text{end}} - \beta_0 \right) \beta = \beta_0 + \left( \beta_{\textrm{end}} - \beta_0 \right)
\frac{t}{t_{\text{end}}} \frac{t}{t_{\textrm{end}}}
\f{equation*} \f$
* *
* \sa SOM * \sa SOM
*/ */
......
...@@ -33,11 +33,11 @@ public: ...@@ -33,11 +33,11 @@ public:
* Performs an inverse multiquadric kernel evaluation that suit * Performs an inverse multiquadric kernel evaluation that suit
* spectral data. * spectral data.
* It is of kind: * It is of kind:
* $\frac{1}{\sqrt{ c_0 + \cos\text{SAM(x,y)} }}$ where $\text{SAM(x,y)}$ is * $\frac{1}{\sqrt{ c_0 + \cos\textrm{SAM(x,y)} }}$ where $\textrm{SAM(x,y)}$ is
* Spectral Angle Measure: * Spectral Angle Measure:
* $\text{SAM(x,y) = \acos\left( \frac{x \cdot y}{\|x\| \|y\|} \right)$. * $\textrm{SAM(x,y) = \acos\left( \frac{x \cdot y}{\|x\| \|y\|} \right)$.
* *
* The only parameter $c_0$ is to be fixed by the \code{SetValue} * The only parameter $c_0$ is to be fixed by the \code SetValue \endcode
* interface with keyword Coef (def 2.0). * interface with keyword Coef (def 2.0).
*/ */
double operator() ( const svm_node * x, const svm_node * y, double operator() ( const svm_node * x, const svm_node * y,
...@@ -46,7 +46,7 @@ public: ...@@ -46,7 +46,7 @@ public:
SpectralAngleKernelFunctor (); SpectralAngleKernelFunctor ();
virtual ~SpectralAngleKernelFunctor () { } virtual ~SpectralAngleKernelFunctor () { }
/** Specific implementation of \code{Update} to split m_MapParameters /** Specific implementation of \code Update \endcode to split m_MapParameters
* into specific variables to speed up kernel evaluations */ * into specific variables to speed up kernel evaluations */
void Update (); void Update ();
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment