Skip to content
Snippets Groups Projects
Commit c6abc8a7 authored by Julien Michel's avatar Julien Michel
Browse files

Ajout fichier .h manquant ossimQuaternion.h

parent 4b639b4d
Branches
Tags
No related merge requests found
#ifndef ossimQuaternion_HEADER
#define ossimQuaternion_HEADER 1
#include <ossim/base/ossimConstants.h>
#include <ossim/base/ossimCommon.h>
#include <ossim/base/ossimColumnVector3d.h>
#include <ossim/base/ossimDpt3d.h>
class ossimMatrix4x4;
namespace ossim
{
/** A quaternion class. It can be used to represent an orientation in 3D space.*/
class OSSIM_DLL Quaternion
{
public:
typedef ossim_float64 value_type;
value_type theVector[4]; // a four-vector
inline Quaternion()
{
theVector[0]=0.0; theVector[1]=0.0; theVector[2]=0.0; theVector[3]=1.0;
}
inline Quaternion( value_type x, value_type y, value_type z, value_type w )
{
theVector[0]=x;
theVector[1]=y;
theVector[2]=z;
theVector[3]=w;
}
/* inline Quaternion( const Vec4f& v ) */
/* { */
/* theVector[0]=v.x(); */
/* theVector[1]=v.y(); */
/* theVector[2]=v.z(); */
/* theVector[3]=v.w(); */
/* } */
/* inline Quaternion( const Vec4d& v ) */
/* { */
/* theVector[0]=v.x(); */
/* theVector[1]=v.y(); */
/* theVector[2]=v.z(); */
/* theVector[3]=v.w(); */
/* } */
inline Quaternion(ossim_float64 angle, const ossimDpt3d& axis)
{
makeRotate(angle,axis);
}
inline Quaternion(ossim_float64 angle, const ossimColumnVector3d& axis)
{
makeRotate(angle,axis);
}
/* inline Quaternion( value_type angle, const Vec3d& axis) */
/* { */
/* makeRotate(angle,axis); */
/* } */
/* inline Quaternion( value_type angle1, const Vec3f& axis1, */
/* value_type angle2, const Vec3f& axis2, */
/* value_type angle3, const Vec3f& axis3) */
/* { */
/* makeRotate(angle1,axis1,angle2,axis2,angle3,axis3); */
/* } */
/* inline Quaternion( value_type angle1, const Vec3d& axis1, */
/* value_type angle2, const Vec3d& axis2, */
/* value_type angle3, const Vec3d& axis3) */
/* { */
/* makeRotate(angle1,axis1,angle2,axis2,angle3,axis3); */
/* } */
inline Quaternion& operator = (const Quaternion& v)
{
theVector[0]=v.theVector[0];
theVector[1]=v.theVector[1];
theVector[2]=v.theVector[2];
theVector[3]=v.theVector[3];
return *this;
}
inline bool operator == (const Quaternion& v) const { return theVector[0]==v.theVector[0] && theVector[1]==v.theVector[1] && theVector[2]==v.theVector[2] && theVector[3]==v.theVector[3]; }
inline bool operator != (const Quaternion& v) const { return theVector[0]!=v.theVector[0] || theVector[1]!=v.theVector[1] || theVector[2]!=v.theVector[2] || theVector[3]!=v.theVector[3]; }
inline bool operator < (const Quaternion& v) const
{
if (theVector[0]<v.theVector[0]) return true;
else if (theVector[0]>v.theVector[0]) return false;
else if (theVector[1]<v.theVector[1]) return true;
else if (theVector[1]>v.theVector[1]) return false;
else if (theVector[2]<v.theVector[2]) return true;
else if (theVector[2]>v.theVector[2]) return false;
else return (theVector[3]<v.theVector[3]);
}
inline void set(value_type x, value_type y, value_type z, value_type w)
{
theVector[0]=x;
theVector[1]=y;
theVector[2]=z;
theVector[3]=w;
}
void set(const ossimMatrix4x4& matrix);
void get(ossimMatrix4x4& matrix) const;
inline value_type & operator [] (int i) { return theVector[i]; }
inline value_type operator [] (int i) const { return theVector[i]; }
inline value_type & x() { return theVector[0]; }
inline value_type & y() { return theVector[1]; }
inline value_type & z() { return theVector[2]; }
inline value_type & w() { return theVector[3]; }
inline value_type x() const { return theVector[0]; }
inline value_type y() const { return theVector[1]; }
inline value_type z() const { return theVector[2]; }
inline value_type w() const { return theVector[3]; }
/** return true if the Quaternion represents a zero rotation, and therefore can be ignored in computations.*/
bool zeroRotation() const { return theVector[0]==0.0 && theVector[1]==0.0 && theVector[2]==0.0 && theVector[3]==1.0; }
/* -------------------------------------------------------------
BASIC ARITHMETIC METHODS
Implemented in terms of Vec4s. Some Vec4 operators, e.g.
operator* are not appropriate for quaternions (as
mathematical objects) so they are implemented differently.
Also define methods for conjugate and the multiplicative inverse.
------------------------------------------------------------- */
/// Multiply by scalar
inline const Quaternion operator * (value_type rhs) const
{
return Quaternion(theVector[0]*rhs, theVector[1]*rhs, theVector[2]*rhs, theVector[3]*rhs);
}
/// Unary multiply by scalar
inline Quaternion& operator *= (value_type rhs)
{
theVector[0]*=rhs;
theVector[1]*=rhs;
theVector[2]*=rhs;
theVector[3]*=rhs;
return *this; // enable nesting
}
/// Binary multiply
inline const Quaternion operator*(const Quaternion& rhs) const
{
return Quaternion( rhs.theVector[3]*theVector[0] + rhs.theVector[0]*theVector[3] + rhs.theVector[1]*theVector[2] - rhs.theVector[2]*theVector[1],
rhs.theVector[3]*theVector[1] - rhs.theVector[0]*theVector[2] + rhs.theVector[1]*theVector[3] + rhs.theVector[2]*theVector[0],
rhs.theVector[3]*theVector[2] + rhs.theVector[0]*theVector[1] - rhs.theVector[1]*theVector[0] + rhs.theVector[2]*theVector[3],
rhs.theVector[3]*theVector[3] - rhs.theVector[0]*theVector[0] - rhs.theVector[1]*theVector[1] - rhs.theVector[2]*theVector[2] );
}
/// Unary multiply
inline Quaternion& operator*=(const Quaternion& rhs)
{
value_type x = rhs.theVector[3]*theVector[0] + rhs.theVector[0]*theVector[3] + rhs.theVector[1]*theVector[2] - rhs.theVector[2]*theVector[1];
value_type y = rhs.theVector[3]*theVector[1] - rhs.theVector[0]*theVector[2] + rhs.theVector[1]*theVector[3] + rhs.theVector[2]*theVector[0];
value_type z = rhs.theVector[3]*theVector[2] + rhs.theVector[0]*theVector[1] - rhs.theVector[1]*theVector[0] + rhs.theVector[2]*theVector[3];
theVector[3] = rhs.theVector[3]*theVector[3] - rhs.theVector[0]*theVector[0] - rhs.theVector[1]*theVector[1] - rhs.theVector[2]*theVector[2];
theVector[2] = z;
theVector[1] = y;
theVector[0] = x;
return (*this); // enable nesting
}
/// Divide by scalar
inline Quaternion operator / (value_type rhs) const
{
value_type div = 1.0/rhs;
return Quaternion(theVector[0]*div, theVector[1]*div, theVector[2]*div, theVector[3]*div);
}
/// Unary divide by scalar
inline Quaternion& operator /= (value_type rhs)
{
value_type div = 1.0/rhs;
theVector[0]*=div;
theVector[1]*=div;
theVector[2]*=div;
theVector[3]*=div;
return *this;
}
/// Binary divide
inline const Quaternion operator/(const Quaternion& denom) const
{
return ( (*this) * denom.inverse() );
}
/// Unary divide
inline Quaternion& operator/=(const Quaternion& denom)
{
(*this) = (*this) * denom.inverse();
return (*this); // enable nesting
}
/// Binary addition
inline const Quaternion operator + (const Quaternion& rhs) const
{
return Quaternion(theVector[0]+rhs.theVector[0], theVector[1]+rhs.theVector[1],
theVector[2]+rhs.theVector[2], theVector[3]+rhs.theVector[3]);
}
/// Unary addition
inline Quaternion& operator += (const Quaternion& rhs)
{
theVector[0] += rhs.theVector[0];
theVector[1] += rhs.theVector[1];
theVector[2] += rhs.theVector[2];
theVector[3] += rhs.theVector[3];
return *this; // enable nesting
}
/// Binary subtraction
inline const Quaternion operator - (const Quaternion& rhs) const
{
return Quaternion(theVector[0]-rhs.theVector[0], theVector[1]-rhs.theVector[1],
theVector[2]-rhs.theVector[2], theVector[3]-rhs.theVector[3] );
}
/// Unary subtraction
inline Quaternion& operator -= (const Quaternion& rhs)
{
theVector[0]-=rhs.theVector[0];
theVector[1]-=rhs.theVector[1];
theVector[2]-=rhs.theVector[2];
theVector[3]-=rhs.theVector[3];
return *this; // enable nesting
}
/** Negation operator - returns the negative of the quaternion.
Basically just calls operator - () on the Vec4 */
inline const Quaternion operator - () const
{
return Quaternion (-theVector[0], -theVector[1], -theVector[2], -theVector[3]);
}
/// Length of the quaternion = sqrt( vec . vec )
value_type length() const
{
return std::sqrt( theVector[0]*theVector[0] + theVector[1]*theVector[1] + theVector[2]*theVector[2] + theVector[3]*theVector[3]);
}
/// Length of the quaternion = vec . vec
value_type length2() const
{
return theVector[0]*theVector[0] + theVector[1]*theVector[1] + theVector[2]*theVector[2] + theVector[3]*theVector[3];
}
/// Conjugate
inline Quaternion conj () const
{
return Quaternion( -theVector[0], -theVector[1], -theVector[2], theVector[3] );
}
/// Multiplicative inverse method: q^(-1) = q^*/(q.q^*)
inline const Quaternion inverse () const
{
return conj() / length2();
}
/* --------------------------------------------------------
METHODS RELATED TO ROTATIONS
Set a quaternion which will perform a rotation of an
angle around the axis given by the vector (x,y,z).
Should be written to also accept an angle and a Vec3?
Define Spherical Linear interpolation method also
Not inlined - see the Quat.cpp file for implementation
-------------------------------------------------------- */
void makeRotate( value_type angle,
value_type x, value_type y, value_type z );
void makeRotate ( value_type angle, const ossimColumnVector3d& vec )
{ makeRotate(angle, vec[0], vec[1], vec[2]);}
void makeRotate ( value_type angle, const ossimDpt3d& vec )
{ makeRotate(angle, vec.x, vec.y, vec.z);}
void makeRotate ( value_type angle1, const ossimColumnVector3d& axis1,
value_type angle2, const ossimColumnVector3d& axis2,
value_type angle3, const ossimColumnVector3d& axis3);
void makeRotate ( value_type angle1, const ossimDpt3d& axis1,
value_type angle2, const ossimDpt3d& axis2,
value_type angle3, const ossimDpt3d& axis3);
/** Make a rotation Quaternion which will rotate vec1 to vec2.
Generally take a dot product to get the angle between these
and then use a cross product to get the rotation axis
Watch out for the two special cases when the vectors
are co-incident or opposite in direction.*/
void makeRotate( const ossimColumnVector3d& vec1, const ossimColumnVector3d& vec2 );
/** Make a rotation Quaternion which will rotate vec1 to vec2.
Generally take a dot product to get the angle between these
and then use a cross product to get the rotation axis
Watch out for the two special cases of when the vectors
are co-incident or opposite in direction.*/
void makeRotate( const ossimDpt3d& vec1, const ossimDpt3d& vec2 );
/* void makeRotate_original( const Vec3d& vec1, const Vec3d& vec2 ); */
/**
* Return the angle and vector components represented by the quaternion.
* Angle returned is in degrees.
*/
void getRotate ( value_type & angle, value_type & x, value_type & y, value_type & z ) const;
/**
* Return the angle and vector components represented by the quaternion.
* Angle returned is in degrees.
*/
void getRotate ( value_type& angle, ossimDpt3d& vec ) const
{ getRotate(angle, vec.x, vec.y, vec.z);}
/** Spherical Linear Interpolation.
As it goes from 0 to 1, the Quaternion object goes from "from" to "to". */
void slerp ( value_type t, const Quaternion& from, const Quaternion& to);
/** Rotate a vector by this quaternion.*/
ossimDpt3d operator* (const ossimDpt3d& v) const
{
// nVidia SDK implementation
ossimDpt3d uv, uuv;
ossimDpt3d qvec(theVector[0], theVector[1], theVector[2]);
uv = qvec ^ v;
uuv = qvec ^ uv;
uv *= ( 2.0f * theVector[3] );
uuv *= 2.0f;
return v + uv + uuv;
}
friend ossimDpt3d operator *( const ossimDpt3d& lhs, const ossim::Quaternion& rhs)
{
ossimDpt3d uv, uuv;
ossimDpt3d qvec(rhs.theVector[0], rhs.theVector[1], rhs.theVector[2]);
uv = qvec ^ lhs;
uuv = qvec ^ uv;
uv *= ( 2.0f * rhs.theVector[3] );
uuv *= 2.0f;
return lhs + uv + uuv;
}
}; // end of class prototype
} // end of namespace
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment