Skip to content
Snippets Groups Projects
Commit dded43e3 authored by Jonathan Guinet's avatar Jonathan Guinet
Browse files

DOC: Train SVM Images Classifier Doc update.

parent e5051e4f
No related branches found
No related tags found
No related merge requests found
......@@ -131,6 +131,21 @@ private:
{
SetName("TrainSVMImagesClassifier");
SetDescription("Perform SVM training from multiple input images and multiple vector data.");
// Documentation
SetDocName("Train SVM images Application");
SetDocLongDescription("This application performs SVM training from multiple input images and multiple vector data.");
SetDocLimitations("None");
SetDocAuthors("OTB-Team");
SetDocSeeAlso(" ");
SetDocCLExample("otbApplicationLauncherCommandLine TrainSVMImagesClassifier ${OTB-BIN}/bin"
"--il ${OTB-DATA}/Classification/QB_1_ortho.tif "
"--vd ${OTB-DATA}/Classification/ectorData_QB1.shp"
"--imstat ${OTB-Data}/Baseline/OTB-Applications/Files/clImageStatisticsQB1.xml"
"--b 2 --mv 100 --vtr 0.5 --opt true -out svmModelQB1_allOpt.svm");
AddDocTag("Classification");
AddDocTag("Training");
AddDocTag("SVM");
}
virtual ~TrainSVMImagesClassifier()
......@@ -143,7 +158,7 @@ private:
AddParameter(ParameterType_InputImageList, "il", "Input Image List");
SetParameterDescription("il", "a list of input images.");
AddParameter(ParameterType_InputVectorDataList, "vd", "Vector Data List");
SetParameterDescription("vd", "a list of vector data sample used to train the estimator.");
SetParameterDescription("vd", "A list of vector data sample used to train the estimator.");
AddParameter(ParameterType_Filename, "dem", "DEM repository");
MandatoryOff("dem");
SetParameterDescription("dem", "path to SRTM repository");
......@@ -154,9 +169,9 @@ private:
SetParameterDescription("out", "Output SVM model");
AddParameter(ParameterType_Float, "m", "Margin for SVM learning");
MandatoryOff("m");
SetParameterDescription("m", "Margin for SVM learning");
SetParameterDescription("m", "Margin for SVM learning.");
AddParameter(ParameterType_Int, "b", "Balance and grow the training set");
SetParameterDescription("b", "Balance and grow the training set");
SetParameterDescription("b", "Balance and grow the training set.");
MandatoryOff("b");
AddParameter(ParameterType_Choice, "k", "SVM Kernel Type");
MandatoryOff("k");
......@@ -165,18 +180,18 @@ private:
AddChoice("k.poly", "Polynomial");
AddChoice("k.sigmoid", "Sigmoid");
SetParameterString("k", "linear");
SetParameterDescription("k", "SVM Kernel Type");
SetParameterDescription("k", "SVM Kernel Type.");
AddParameter(ParameterType_Int, "mt", "Maximum training sample size");
MandatoryOff("mt");
SetParameterInt("mt", -1);
SetParameterDescription("mt", "Maximum size of the training sample (default = -1)");
SetParameterDescription("mt", "Maximum size of the training sample (default = -1).");
AddParameter(ParameterType_Int, "mv", "Maximum validation sample size");
MandatoryOff("mv");
SetParameterInt("mv", -1);
SetParameterDescription("mv", "Maximum size of the validation sample (default = -1)");
AddParameter(ParameterType_Float, "vtr", "training and validation sample ratio");
SetParameterDescription("vtr",
"Ratio between training and validation sample (0.0 = all training, 1.0 = all validation) default = 0.5");
"Ratio between training and validation sample (0.0 = all training, 1.0 = all validation) default = 0.5.");
MandatoryOff("vtr");
SetParameterFloat("vtr", 0.5);
AddParameter(ParameterType_Empty, "opt", "parameters optimization");
......@@ -184,7 +199,7 @@ private:
SetParameterDescription("opt", "SVM parameters optimization");
AddParameter(ParameterType_Filename, "vfn", "Name of the discrimination field");
MandatoryOff("vfn");
SetParameterDescription("vfn", "Name of the field using to discriminate class in the vector data files");
SetParameterDescription("vfn", "Name of the field using to discriminate class in the vector data files.");
SetParameterString("vfn", "Class");
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment