Skip to content
Snippets Groups Projects
Commit 23c7aecc authored by Victor Poughon's avatar Victor Poughon
Browse files

Revert "Merge remote-tracking branch 'origin/revert_shark' into release-6.6"

This reverts commit 81bed5ae, reversing
changes made to f3749c05.
parent 499e1a17
No related branches found
No related tags found
No related merge requests found
Showing
with 291 additions and 170 deletions
......@@ -291,12 +291,15 @@ protected:
itkExceptionMacro(<< "File : " << modelFileName << " couldn't be opened");
}
// get the end line with the centroids
// get the line with the centroids (starts with "2 ")
std::string line, centroidLine;
while(std::getline(infile,line))
{
if (!line.empty())
if (line.size() > 2 && line[0] == '2' && line[1] == ' ')
{
centroidLine = line;
break;
}
}
std::vector<std::string> centroidElm;
......
......@@ -33,8 +33,9 @@
#endif
#include "otb_shark.h"
#include <shark/Algorithms/StoppingCriteria/AbstractStoppingCriterion.h>
#include <shark/Models/FFNet.h>
#include <shark/Models/Autoencoder.h>
#include <shark/Models/LinearModel.h>
#include <shark/Models/ConcatenatedModel.h>
#include <shark/Models/NeuronLayers.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
......@@ -76,9 +77,9 @@ public:
typedef typename Superclass::ConfidenceListSampleType ConfidenceListSampleType;
/// Neural network related typedefs
typedef shark::Autoencoder<NeuronType,shark::LinearNeuron> OutAutoencoderType;
typedef shark::Autoencoder<NeuronType,NeuronType> AutoencoderType;
typedef shark::FFNet<NeuronType,shark::LinearNeuron> NetworkType;
typedef shark::ConcatenatedModel<shark::RealVector> ModelType;
typedef shark::LinearModel<shark::RealVector,NeuronType> LayerType;
typedef shark::LinearModel<shark::RealVector, shark::LinearNeuron> OutLayerType;
itkNewMacro(Self);
itkTypeMacro(AutoencoderModel, DimensionalityReductionModel);
......@@ -127,18 +128,16 @@ public:
void Train() override;
template <class T, class Autoencoder>
template <class T>
void TrainOneLayer(
shark::AbstractStoppingCriterion<T> & criterion,
Autoencoder &,
unsigned int,
shark::Data<shark::RealVector> &,
std::ostream&);
template <class T, class Autoencoder>
template <class T>
void TrainOneSparseLayer(
shark::AbstractStoppingCriterion<T> & criterion,
Autoencoder &,
unsigned int,
shark::Data<shark::RealVector> &,
std::ostream&);
......@@ -166,7 +165,9 @@ protected:
private:
/** Internal Network */
NetworkType m_Net;
ModelType m_Encoder;
std::vector<LayerType> m_InLayers;
OutLayerType m_OutLayer;
itk::Array<unsigned int> m_NumberOfHiddenNeurons;
/** Training parameters */
unsigned int m_NumberOfIterations; // stop the training after a fixed number of iterations
......
......@@ -34,18 +34,17 @@
#include "otbSharkUtils.h"
//include train function
#include <shark/ObjectiveFunctions/ErrorFunction.h>
#include <shark/ObjectiveFunctions/SparseAutoencoderError.h>//the error function performing the regularisation of the hidden neurons
//~ #include <shark/ObjectiveFunctions/SparseAutoencoderError.h>//the error function performing the regularisation of the hidden neurons
#include <shark/Algorithms/GradientDescent/Rprop.h>// the RProp optimization algorithm
#include <shark/ObjectiveFunctions/Loss/SquaredLoss.h> // squared loss used for regression
#include <shark/ObjectiveFunctions/Regularizer.h> //L2 regulariziation
#include <shark/Models/ImpulseNoiseModel.h> //noise source to corrupt the inputs
#include <shark/Models/ConcatenatedModel.h>//to concatenate the noise with the model
//~ #include <shark/Models/ImpulseNoiseModel.h> //noise source to corrupt the inputs
#include <shark/Algorithms/StoppingCriteria/MaxIterations.h> //A simple stopping criterion that stops after a fixed number of iterations
#include <shark/Algorithms/StoppingCriteria/TrainingProgress.h> //Stops when the algorithm seems to converge, Tracks the progress of the training error over a period of time
#include <shark/Algorithms/GradientDescent/SteepestDescent.h>
#include <shark/Algorithms/GradientDescent/Adam.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
......@@ -83,96 +82,56 @@ AutoencoderModel<TInputValue,NeuronType>
}
// Initialization of the feed forward neural network
std::vector<size_t> layers;
layers.push_back(shark::dataDimension(inputSamples));
m_Encoder = ModelType();
m_InLayers.clear();
size_t previousShape = shark::dataDimension(inputSamples);
for (unsigned int i = 0 ; i < m_NumberOfHiddenNeurons.Size(); ++i)
{
layers.push_back(m_NumberOfHiddenNeurons[i]);
m_InLayers.push_back( LayerType(previousShape, m_NumberOfHiddenNeurons[i]) );
previousShape = m_NumberOfHiddenNeurons[i];
m_Encoder.add(&(m_InLayers.back()), true);
}
for (unsigned int i = std::max(0,static_cast<int>(m_NumberOfHiddenNeurons.Size()-1)) ; i > 0; --i)
{
layers.push_back(m_NumberOfHiddenNeurons[i-1]);
}
layers.push_back(shark::dataDimension(inputSamples));
m_Net.setStructure(layers);
shark::initRandomNormal(m_Net,0.1);
// Training of the first Autoencoder (first and last layer of the FF network)
if (m_Epsilon > 0)
{
shark::TrainingProgress<> criterion(5,m_Epsilon);
OutAutoencoderType net;
// Shark doesn't allow to train a layer using a sparsity term AND a noisy input.
if (m_Noise[0] != 0)
{
TrainOneLayer(criterion, net, 0, inputSamples, ofs);
}
else
{
TrainOneSparseLayer(criterion, net, 0, inputSamples, ofs);
}
criterion.reset();
m_InLayers.push_back( LayerType(previousShape, m_NumberOfHiddenNeurons[i-1]) );
previousShape = m_NumberOfHiddenNeurons[i-1];
}
else
{
shark::MaxIterations<> criterion(m_NumberOfIterations);
m_OutLayer = OutLayerType(previousShape, shark::dataDimension(inputSamples));
OutAutoencoderType net;
// Shark doesn't allow to train a layer using a sparsity term AND a noisy input.
if (m_Noise[0] != 0)
{
TrainOneLayer(criterion, net, 0, inputSamples, ofs);
otbMsgDevMacro(<< "m_Noise " << m_Noise[0]);
}
else
{
TrainOneSparseLayer(criterion, net, 0, inputSamples, ofs);
}
criterion.reset();
}
// Training of the other autoencoders
if (m_Epsilon > 0)
// Training of the autoencoders pairwise, starting from the first and last layers
for (unsigned int i = 0 ; i < m_NumberOfHiddenNeurons.Size(); ++i)
{
shark::TrainingProgress<> criterion(5,m_Epsilon);
for (unsigned int i = 1 ; i < m_NumberOfHiddenNeurons.Size(); ++i)
if (m_Epsilon > 0)
{
AutoencoderType net;
shark::TrainingProgress<> criterion(5,m_Epsilon);
// Shark doesn't allow to train a layer using a sparsity term AND a noisy input.
if (m_Noise[i] != 0)
{
TrainOneLayer(criterion, net, i, inputSamples, ofs);
TrainOneLayer(criterion, i, inputSamples, ofs);
}
else
{
TrainOneSparseLayer(criterion, net, i, inputSamples, ofs);
TrainOneSparseLayer(criterion, i, inputSamples, ofs);
}
criterion.reset();
}
}
else
{
shark::MaxIterations<> criterion(m_NumberOfIterations);
for (unsigned int i = 1 ; i < m_NumberOfHiddenNeurons.Size(); ++i)
else
{
AutoencoderType net;
shark::MaxIterations<> criterion(m_NumberOfIterations);
// Shark doesn't allow to train a layer using a sparsity term AND a noisy input.
if (m_Noise[i] != 0)
{
TrainOneLayer(criterion, net, i, inputSamples, ofs);
TrainOneLayer(criterion, i, inputSamples, ofs);
otbMsgDevMacro(<< "m_Noise " << m_Noise[0]);
}
else
{
TrainOneSparseLayer( criterion, net, i, inputSamples, ofs);
TrainOneSparseLayer( criterion, i, inputSamples, ofs);
}
criterion.reset();
}
// encode the samples with the last encoder trained
inputSamples = m_InLayers[i](inputSamples);
}
if (m_NumberOfIterationsFineTuning > 0)
{
......@@ -183,31 +142,37 @@ AutoencoderModel<TInputValue,NeuronType>
}
template <class TInputValue, class NeuronType>
template <class T, class Autoencoder>
template <class T>
void
AutoencoderModel<TInputValue,NeuronType>
::TrainOneLayer(
shark::AbstractStoppingCriterion<T> & criterion,
Autoencoder & net,
unsigned int layer_index,
shark::Data<shark::RealVector> &samples,
std::ostream& File)
{
typedef shark::AbstractModel<shark::RealVector,shark::RealVector> BaseModelType;
ModelType net;
net.add(&(m_InLayers[layer_index]), true);
net.add( (layer_index ?
(BaseModelType*) &(m_InLayers[m_NumberOfHiddenNeurons.Size()*2 - 1 - layer_index]) :
(BaseModelType*) &m_OutLayer) , true);
otbMsgDevMacro(<< "Noise " << m_Noise[layer_index]);
std::size_t inputs = dataDimension(samples);
net.setStructure(inputs, m_NumberOfHiddenNeurons[layer_index]);
initRandomUniform(net,-m_InitFactor*std::sqrt(1.0/inputs),m_InitFactor*std::sqrt(1.0/inputs));
shark::ImpulseNoiseModel noise(inputs,m_Noise[layer_index],1.0); //set an input pixel with probability m_Noise to 0
shark::ConcatenatedModel<shark::RealVector,shark::RealVector> model = noise>> net;
//~ shark::ImpulseNoiseModel noise(inputs,m_Noise[layer_index],1.0); //set an input pixel with probability m_Noise to 0
//~ shark::ConcatenatedModel<shark::RealVector,shark::RealVector> model = noise>> net;
shark::LabeledData<shark::RealVector,shark::RealVector> trainSet(samples,samples);//labels identical to inputs
shark::SquaredLoss<shark::RealVector> loss;
shark::ErrorFunction error(trainSet, &model, &loss);
//~ shark::ErrorFunction error(trainSet, &model, &loss);
shark::ErrorFunction<> error(trainSet, &net, &loss);
shark::TwoNormRegularizer regularizer(error.numberOfVariables());
shark::TwoNormRegularizer<> regularizer(error.numberOfVariables());
error.setRegularizer(m_Regularization[layer_index],&regularizer);
shark::IRpropPlusFull optimizer;
shark::Adam<> optimizer;
error.init();
optimizer.init(error);
......@@ -230,35 +195,37 @@ AutoencoderModel<TInputValue,NeuronType>
} while( !criterion.stop( optimizer.solution() ) );
net.setParameterVector(optimizer.solution().point);
m_Net.setLayer(layer_index,net.encoderMatrix(),net.hiddenBias()); // Copy the encoder in the FF neural network
m_Net.setLayer( m_NumberOfHiddenNeurons.Size()*2 - 1 - layer_index,net.decoderMatrix(),net.outputBias()); // Copy the decoder in the FF neural network
samples = net.encode(samples);
}
template <class TInputValue, class NeuronType>
template <class T, class Autoencoder>
template <class T>
void AutoencoderModel<TInputValue,NeuronType>::TrainOneSparseLayer(
shark::AbstractStoppingCriterion<T> & criterion,
Autoencoder & net,
unsigned int layer_index,
shark::Data<shark::RealVector> &samples,
std::ostream& File)
{
//AutoencoderType net;
std::size_t inputs = dataDimension(samples);
net.setStructure(inputs, m_NumberOfHiddenNeurons[layer_index]);
typedef shark::AbstractModel<shark::RealVector,shark::RealVector> BaseModelType;
ModelType net;
net.add(&(m_InLayers[layer_index]), true);
net.add( (layer_index ?
(BaseModelType*) &(m_InLayers[m_NumberOfHiddenNeurons.Size()*2 - 1 - layer_index]) :
(BaseModelType*) &m_OutLayer) , true);
std::size_t inputs = dataDimension(samples);
shark::initRandomUniform(net,-m_InitFactor*std::sqrt(1.0/inputs),m_InitFactor*std::sqrt(1.0/inputs));
// Idea : set the initials value for the output weights higher than the input weights
shark::LabeledData<shark::RealVector,shark::RealVector> trainSet(samples,samples);//labels identical to inputs
shark::SquaredLoss<shark::RealVector> loss;
shark::SparseAutoencoderError error(trainSet,&net, &loss, m_Rho[layer_index], m_Beta[layer_index]);
shark::TwoNormRegularizer regularizer(error.numberOfVariables());
//~ shark::SparseAutoencoderError error(trainSet,&net, &loss, m_Rho[layer_index], m_Beta[layer_index]);
// SparseAutoencoderError doesn't exist anymore, for now use a plain ErrorFunction
shark::ErrorFunction<> error(trainSet, &net, &loss);
shark::TwoNormRegularizer<> regularizer(error.numberOfVariables());
error.setRegularizer(m_Regularization[layer_index],&regularizer);
shark::IRpropPlusFull optimizer;
shark::Adam<> optimizer;
error.init();
optimizer.init(error);
......@@ -279,9 +246,6 @@ void AutoencoderModel<TInputValue,NeuronType>::TrainOneSparseLayer(
File << "end layer" << std::endl;
}
net.setParameterVector(optimizer.solution().point);
m_Net.setLayer(layer_index,net.encoderMatrix(),net.hiddenBias()); // Copy the encoder in the FF neural network
m_Net.setLayer( m_NumberOfHiddenNeurons.Size()*2 - 1 - layer_index,net.decoderMatrix(),net.outputBias()); // Copy the decoder in the FF neural network
samples = net.encode(samples);
}
template <class TInputValue, class NeuronType>
......@@ -293,15 +257,23 @@ AutoencoderModel<TInputValue,NeuronType>
shark::Data<shark::RealVector> &samples,
std::ostream& File)
{
// create full network
ModelType net;
for (auto &layer : m_InLayers)
{
net.add(&layer, true);
}
net.add(&m_OutLayer, true);
//labels identical to inputs
shark::LabeledData<shark::RealVector,shark::RealVector> trainSet(samples,samples);
shark::SquaredLoss<shark::RealVector> loss;
shark::ErrorFunction error(trainSet, &m_Net, &loss);
shark::TwoNormRegularizer regularizer(error.numberOfVariables());
shark::ErrorFunction<> error(trainSet, &net, &loss);
shark::TwoNormRegularizer<> regularizer(error.numberOfVariables());
error.setRegularizer(m_Regularization[0],&regularizer);
shark::IRpropPlusFull optimizer;
shark::Adam<> optimizer;
error.init();
optimizer.init(error);
otbMsgDevMacro(<<"Error before training : " << optimizer.solution().value);
......@@ -326,7 +298,6 @@ AutoencoderModel<TInputValue,NeuronType>
try
{
this->Load(filename);
m_Net.name();
}
catch(...)
{
......@@ -350,22 +321,15 @@ AutoencoderModel<TInputValue,NeuronType>
{
otbMsgDevMacro(<< "saving model ...");
std::ofstream ofs(filename);
ofs << m_Net.name() << std::endl; // the first line of the model file contains a key
ofs << "Autoencoder" << std::endl; // the first line of the model file contains a key
ofs << (m_InLayers.size() + 1) << std::endl; // second line is the number of encoders/decoders
shark::TextOutArchive oa(ofs);
oa << m_Net;
ofs.close();
if (this->m_WriteWeights == true) // output the map vectors in a txt file
for (const auto &layer : m_InLayers)
{
std::ofstream otxt(filename+".txt");
for (unsigned int i = 0 ; i < m_Net.layerMatrices().size(); ++i)
{
otxt << "layer " << i << std::endl;
otxt << m_Net.layerMatrix(i) << std::endl;
otxt << m_Net.bias(i) << std::endl;
otxt << std::endl;
}
oa << layer;
}
oa << m_OutLayer;
ofs.close();
}
template <class TInputValue, class NeuronType>
......@@ -373,23 +337,39 @@ void
AutoencoderModel<TInputValue,NeuronType>
::Load(const std::string & filename, const std::string & /*name*/)
{
NetworkType net;
std::ifstream ifs(filename);
char autoencoder[256];
ifs.getline(autoencoder,256);
std::string autoencoderstr(autoencoder);
if (autoencoderstr != net.name()){
char buffer[256];
// check first line
ifs.getline(buffer,256);
std::string bufferStr(buffer);
if (bufferStr != "Autoencoder"){
itkExceptionMacro(<< "Error opening " << filename.c_str() );
}
// check second line
ifs.getline(buffer,256);
int nbLevels = boost::lexical_cast<int>(buffer);
if (nbLevels < 2 || nbLevels%2 == 1)
{
itkExceptionMacro(<< "Unexpected number of levels : "<<buffer );
}
m_InLayers.clear();
m_Encoder = ModelType();
shark::TextInArchive ia(ifs);
ia >> m_Net;
for (int i=0 ; (i+1) < nbLevels ; i++)
{
LayerType layer;
ia >> layer;
m_InLayers.push_back(layer);
}
ia >> m_OutLayer;
ifs.close();
// This gives us the dimension if we keep the encoder and decoder
size_t feature_layer_index = m_Net.layerMatrices().size()/2;
// number of neurons in the feature layer (second dimension of the first decoder weight matrix)
this->SetDimension(m_Net.layerMatrix(feature_layer_index).size2());
for (int i=0 ; i < nbLevels/2 ; i++)
{
m_Encoder.add(&(m_InLayers[i]) ,true);
}
this->SetDimension( m_Encoder.outputShape()[0] );
}
template <class TInputValue, class NeuronType>
......@@ -409,7 +389,7 @@ AutoencoderModel<TInputValue,NeuronType>
shark::Data<shark::RealVector> data = shark::createDataFromRange(features);
// features layer for a network containing the encoder and decoder part
data = m_Net.evalLayer( m_Net.layerMatrices().size()/2-1 ,data);
data = m_Encoder(data);
TargetSampleType target;
target.SetSize(this->m_Dimension);
......@@ -435,7 +415,7 @@ AutoencoderModel<TInputValue,NeuronType>
shark::Data<shark::RealVector> data = shark::createDataFromRange(features);
TargetSampleType target;
// features layer for a network containing the encoder and decoder part
data = m_Net.evalLayer( m_Net.layerMatrices().size()/2-1 ,data);
data = m_Encoder(data);
unsigned int id = startIndex;
target.SetSize(this->m_Dimension);
......
......@@ -137,11 +137,11 @@ PCAModel<TInputValue>::Load(const std::string & filename, const std::string & /*
ifs.close();
if (this->m_Dimension ==0)
{
this->m_Dimension = m_Encoder.outputSize();
this->m_Dimension = m_Encoder.outputShape()[0];
}
auto eigenvectors = m_Encoder.matrix();
eigenvectors.resize(this->m_Dimension,m_Encoder.inputSize());
eigenvectors.resize(this->m_Dimension,m_Encoder.inputShape()[0]);
m_Encoder.setStructure(eigenvectors, m_Encoder.offset() );
}
......
......@@ -28,7 +28,11 @@ otb_module(OTBLearningBase
OTBImageBase
OTBITK
TEST_DEPENDS
OPTIONAL_DEPENDS
OTBShark
TEST_DEPENDS
OTBBoost
OTBTestKernel
OTBImageIO
......
......@@ -32,6 +32,10 @@ otbKMeansImageClassificationFilterNew.cxx
otbMachineLearningModelTemplates.cxx
)
if(OTB_USE_SHARK)
set(OTBLearningBaseTests ${OTBLearningBaseTests} otbSharkUtilsTests.cxx)
endif()
add_executable(otbLearningBaseTestDriver ${OTBLearningBaseTests})
target_link_libraries(otbLearningBaseTestDriver ${OTBLearningBase-Test_LIBRARIES})
otb_module_target_label(otbLearningBaseTestDriver)
......@@ -68,3 +72,7 @@ otb_add_test(NAME leTuDecisionTreeNew COMMAND otbLearningBaseTestDriver
otb_add_test(NAME leTuKMeansImageClassificationFilterNew COMMAND otbLearningBaseTestDriver
otbKMeansImageClassificationFilterNew)
if(OTB_USE_SHARK)
otb_add_test(NAME leTuSharkNormalizeLabels COMMAND otbLearningBaseTestDriver
otbSharkNormalizeLabels)
endif()
......@@ -29,4 +29,7 @@ void RegisterTests()
REGISTER_TEST(otbSEMClassifierNew);
REGISTER_TEST(otbDecisionTreeNew);
REGISTER_TEST(otbKMeansImageClassificationFilterNew);
#ifdef OTB_USE_SHARK
REGISTER_TEST(otbSharkNormalizeLabels);
#endif
}
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "itkMacro.h"
#include "otbSharkUtils.h"
int otbSharkNormalizeLabels(int itkNotUsed(argc), char* itkNotUsed(argv) [])
{
std::vector<unsigned int> inLabels = {2, 2, 3, 20, 1};
std::vector<unsigned int> expectedDictionary = {2, 3, 20, 1};
std::vector<unsigned int> expectedLabels = {0, 0, 1, 2, 3};
auto newLabels = inLabels;
std::vector<unsigned int> labelDict;
otb::Shark::NormalizeLabelsAndGetDictionary(newLabels, labelDict);
if(newLabels != expectedLabels)
{
std::cout << "Wrong new labels\n";
for(size_t i = 0; i<newLabels.size(); ++i)
std::cout << "Got " << newLabels[i] << " expected " << expectedLabels[i] << '\n';
return EXIT_FAILURE;
}
if(labelDict != expectedDictionary)
{
std::cout << "Wrong dictionary\n";
for(size_t i = 0; i<labelDict.size(); ++i)
std::cout << "Got " << labelDict[i] << " expected " << expectedDictionary[i] << '\n';
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
......@@ -36,6 +36,7 @@
#pragma GCC diagnostic ignored "-Wheader-guard"
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
#include <shark/Models/Classifier.h>
#include "otb_shark.h"
#include "shark/Algorithms/Trainers/RFTrainer.h"
#if defined(__GNUC__) || defined(__clang__)
......@@ -136,6 +137,10 @@ public:
/** If true, margin confidence value will be computed */
itkSetMacro(ComputeMargin, bool);
/** If true, class labels will be normalised in [0 ... nbClasses] */
itkGetMacro(NormalizeClassLabels, bool);
itkSetMacro(NormalizeClassLabels, bool);
protected:
/** Constructor */
SharkRandomForestsMachineLearningModel();
......@@ -156,8 +161,10 @@ private:
SharkRandomForestsMachineLearningModel(const Self &) = delete;
void operator =(const Self&) = delete;
shark::RFClassifier m_RFModel;
shark::RFTrainer m_RFTrainer;
shark::RFClassifier<unsigned int> m_RFModel;
shark::RFTrainer<unsigned int> m_RFTrainer;
std::vector<unsigned int> m_ClassDictionary;
bool m_NormalizeClassLabels;
unsigned int m_NumberOfTrees;
unsigned int m_MTry;
......
......@@ -32,7 +32,6 @@
#pragma GCC diagnostic ignored "-Woverloaded-virtual"
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
#endif
#include <shark/Models/Converter.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
......@@ -52,6 +51,7 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
this->m_ConfidenceIndex = true;
this->m_IsRegressionSupported = false;
this->m_IsDoPredictBatchMultiThreaded = true;
this->m_NormalizeClassLabels = true;
}
......@@ -76,13 +76,17 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
Shark::ListSampleToSharkVector(this->GetInputListSample(), features);
Shark::ListSampleToSharkVector(this->GetTargetListSample(), class_labels);
if(m_NormalizeClassLabels)
{
Shark::NormalizeLabelsAndGetDictionary(class_labels, m_ClassDictionary);
}
shark::ClassificationDataset TrainSamples = shark::createLabeledDataFromRange(features,class_labels);
//Set parameters
m_RFTrainer.setMTry(m_MTry);
m_RFTrainer.setNTrees(m_NumberOfTrees);
m_RFTrainer.setNodeSize(m_NodeSize);
m_RFTrainer.setOOBratio(m_OobRatio);
// m_RFTrainer.setOOBratio(m_OobRatio);
m_RFTrainer.train(m_RFModel, TrainSamples);
}
......@@ -125,15 +129,20 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
}
if (quality != nullptr)
{
shark::RealVector probas = m_RFModel(samples);
shark::RealVector probas = m_RFModel.decisionFunction()(samples);
(*quality) = ComputeConfidence(probas, m_ComputeMargin);
}
shark::ArgMaxConverter<shark::RFClassifier> amc;
amc.decisionFunction() = m_RFModel;
unsigned int res;
amc.eval(samples, res);
unsigned int res{0};
m_RFModel.eval(samples, res);
TargetSampleType target;
target[0] = static_cast<TOutputValue>(res);
if(m_NormalizeClassLabels)
{
target[0] = m_ClassDictionary[static_cast<TOutputValue>(res)];
}
else
{
target[0] = static_cast<TOutputValue>(res);
}
return target;
}
......@@ -157,13 +166,13 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
Shark::ListSampleRangeToSharkVector(input, features,startIndex,size);
shark::Data<shark::RealVector> inputSamples = shark::createDataFromRange(features);
#ifdef _OPENMP
#ifdef _OPENMP
omp_set_num_threads(itk::MultiThreader::GetGlobalDefaultNumberOfThreads());
#endif
#endif
if(quality != nullptr)
{
shark::Data<shark::RealVector> probas = m_RFModel(inputSamples);
shark::Data<shark::RealVector> probas = m_RFModel.decisionFunction()(inputSamples);
unsigned int id = startIndex;
for(shark::RealVector && p : probas.elements())
{
......@@ -175,14 +184,19 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
}
}
shark::ArgMaxConverter<shark::RFClassifier> amc;
amc.decisionFunction() = m_RFModel;
auto prediction = amc(inputSamples);
auto prediction = m_RFModel(inputSamples);
unsigned int id = startIndex;
for(const auto& p : prediction.elements())
{
TargetSampleType target;
target[0] = static_cast<TOutputValue>(p);
if(m_NormalizeClassLabels)
{
target[0] = m_ClassDictionary[static_cast<TOutputValue>(p)];
}
else
{
target[0] = static_cast<TOutputValue>(p);
}
targets->SetMeasurementVector(id,target);
++id;
}
......@@ -199,7 +213,18 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
itkExceptionMacro(<< "Error opening " << filename.c_str() );
}
// Add comment with model file name
ofs << "#" << m_RFModel.name() << std::endl;
ofs << "#" << m_RFModel.name();
if(m_NormalizeClassLabels) ofs << " with_dictionary";
ofs << std::endl;
if(m_NormalizeClassLabels)
{
ofs << m_ClassDictionary.size() << " ";
for(const auto& l : m_ClassDictionary)
{
ofs << l << " ";
}
ofs << std::endl;
}
shark::TextOutArchive oa(ofs);
m_RFModel.save(oa,0);
}
......@@ -219,6 +244,10 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
{
if( line.find( m_RFModel.name() ) == std::string::npos )
itkExceptionMacro( "The model file : " + filename + " cannot be read." );
if( line.find( "with_dictionary" ) == std::string::npos )
{
m_NormalizeClassLabels=false;
}
}
else
{
......@@ -226,6 +255,18 @@ SharkRandomForestsMachineLearningModel<TInputValue,TOutputValue>
ifs.clear();
ifs.seekg( 0, std::ios::beg );
}
if(m_NormalizeClassLabels)
{
size_t nbLabels{0};
ifs >> nbLabels;
m_ClassDictionary.resize(nbLabels);
for(size_t i=0; i<nbLabels; ++i)
{
unsigned int label;
ifs >> label;
m_ClassDictionary[i]=label;
}
}
shark::TextInArchive ia( ifs );
m_RFModel.load( ia, 0 );
}
......
......@@ -55,6 +55,7 @@ SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
m_Normalized( false ), m_K(2), m_MaximumNumberOfIterations( 10 )
{
// Default set HardClusteringModel
this->m_ConfidenceIndex = true;
m_ClusteringModel = boost::make_shared<ClusteringModelType>( &m_Centroids );
}
......@@ -174,7 +175,7 @@ SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
// Change quality measurement only if SoftClustering or other clustering method is used.
if( quality != nullptr )
{
for( unsigned int qid = startIndex; qid < size; ++qid )
for( unsigned int qid = startIndex; qid < startIndex+size; ++qid )
{
quality->SetMeasurementVector( qid, static_cast<ConfidenceValueType>(1.) );
}
......
......@@ -23,6 +23,7 @@
#include <stdexcept>
#include <string>
#include <unordered_map>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
......@@ -127,6 +128,27 @@ template <class T> void ListSampleToSharkVector(const T * listSample, std::vecto
assert(listSample != nullptr);
ListSampleRangeToSharkVector(listSample,output,0, static_cast<unsigned int>(listSample->Size()));
}
/** Shark assumes that labels are 0 ... (nbClasses-1). This function modifies the labels contained in the input vector and returns a vector with size = nbClasses which allows the translation from the normalised labels to the new ones oldLabel = dictionary[newLabel].
*/
template <typename T> void NormalizeLabelsAndGetDictionary(std::vector<T>& labels,
std::vector<T>& dictionary)
{
std::unordered_map<T, T> dictMap;
T labelCount{0};
for(const auto& l : labels)
{
if(dictMap.find(l)==dictMap.end())
dictMap.insert({l, labelCount++});
}
dictionary.resize(labelCount);
for(auto& l : labels)
{
auto newLabel = dictMap[l];
dictionary[newLabel] = l;
l = newLabel;
}
}
}
}
......
......@@ -30,8 +30,8 @@ ADD_SUPERBUILD_CMAKE_VAR(SHARK BOOST_LIBRARYDIR)
ExternalProject_Add(SHARK
PREFIX SHARK
URL "https://github.com/Shark-ML/Shark/archive/v3.1.4.zip"
URL_MD5 149e7d2e458cbe65c6373c2e89876b3e
URL "https://github.com/Shark-ML/Shark/archive/67990bcd2c4a90a27be97d933b3740931e9da141.zip"
URL_MD5 9ad7480a4f9832b63086b9a683566187
SOURCE_DIR ${SHARK_SB_SRC}
BINARY_DIR ${SHARK_SB_BUILD_DIR}
INSTALL_DIR ${SB_INSTALL_PREFIX}
......
diff -burN Shark.orig/CMakeLists.txt Shark/CMakeLists.txt
--- Shark.orig/CMakeLists.txt 2018-02-05 18:04:58.012612932 +0100
+++ Shark/CMakeLists.txt 2018-02-05 18:20:50.032233165 +0100
@@ -415,6 +415,9 @@
#####################################################################
# General Path settings
#####################################################################
+if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
+ add_definitions(-fext-numeric-literals)
+endif()
include_directories( ${shark_SOURCE_DIR}/include )
include_directories( ${shark_BINARY_DIR}/include )
add_subdirectory( include )
diff -burN Shark-349f29bd71c370e0f88f7fc9aa66fa5c4768fcb0.orig/CMakeLists.txt Shark-349f29bd71c370e0f88f7fc9aa66fa5c4768fcb0/CMakeLists.txt
--- Shark-349f29bd71c370e0f88f7fc9aa66fa5c4768fcb0.orig/CMakeLists.txt 2017-08-22 11:31:50.472052695 +0200
+++ Shark-349f29bd71c370e0f88f7fc9aa66fa5c4768fcb0/CMakeLists.txt 2017-08-22 11:32:36.448358789 +0200
@@ -141,10 +141,8 @@
find_package(
Boost 1.48.0 REQUIRED COMPONENTS
- system date_time filesystem
- program_options serialization thread
- unit_test_framework
-)
+ serialization
+ )
if(NOT Boost_FOUND)
message(FATAL_ERROR "Please make sure Boost 1.48.0 is installed on your system")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment