Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
diapotb
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Hermitte
diapotb
Commits
1fdfd58e
Commit
1fdfd58e
authored
4 years ago
by
Valentin Genin
Browse files
Options
Downloads
Patches
Plain Diff
WIP : Compute Alt Ambig
parent
9642c56b
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
app/otbSARAltAmbig.cxx
+98
-10
98 additions, 10 deletions
app/otbSARAltAmbig.cxx
with
98 additions
and
10 deletions
app/otbSARAltAmbig.cxx
+
98
−
10
View file @
1fdfd58e
...
...
@@ -97,6 +97,9 @@ private:
// Start the first pipeline (Read SAR image metadata)
ComplexFloatImageType
::
Pointer
SARPtr
=
GetParameterComplexFloatImage
(
"inmaster"
);
// Start the target pipeline (Read SAR image metadata)
ComplexFloatImageType
::
Pointer
SARPtr_target
=
GetParameterComplexFloatImage
(
"target"
);
// Get lat, lon and height
float
lat
=
GetParameterFloat
(
"lat"
);
otbAppLogINFO
(
<<
"Lat : "
<<
lat
);
...
...
@@ -108,6 +111,7 @@ private:
otbAppLogINFO
(
<<
"Height : "
<<
height
);
otb
::
ImageKeywordlist
sarKWL
=
SARPtr
->
GetImageKeywordlist
();
otb
::
ImageKeywordlist
sarKWL_target
=
SARPtr_target
->
GetImageKeywordlist
();
// Create and Initilaze the SarSensorModelAdapter
SarSensorModelAdapter
::
Pointer
m_SarSensorModelAdapter
=
SarSensorModelAdapter
::
New
();
...
...
@@ -115,9 +119,9 @@ private:
SarSensorModelAdapter
::
Point3DType
demGeoPoint
;
SarSensorModelAdapter
::
Point3DType
xyzCart
;
SarSensorModelAdapter
::
Point3DType
satellitePosition
;
SarSensorModelAdapter
::
Point3DType
satelliteVelocity
;
SarSensorModelAdapter
::
Point3DType
R
;
SarSensorModelAdapter
::
Point3DType
satellitePosition
[
2
]
;
SarSensorModelAdapter
::
Point3DType
satelliteVelocity
[
2
]
;
double
incidence
[
2
]
;
demGeoPoint
[
0
]
=
lon
;
demGeoPoint
[
1
]
=
lat
;
...
...
@@ -125,10 +129,15 @@ private:
SarSensorModelAdapter
::
WorldToCartesian
(
demGeoPoint
,
xyzCart
);
otbAppLogINFO
(
<<
"Cartesian coords : "
<<
xyzCart
[
0
]
<<
" "
<<
xyzCart
[
1
]
<<
" "
<<
xyzCart
[
2
]);
m_SarSensorModelAdapter
->
WorldToSatPositionAndVelocity
(
demGeoPoint
,
satellitePosition
,
satelliteVelocity
);
otbAppLogINFO
(
<<
"Satellite Position : "
<<
satellitePosition
[
0
]
<<
" "
<<
satellitePosition
[
1
]
<<
" "
<<
satellitePosition
[
2
]);
otbAppLogINFO
(
<<
"Satellite Velocity : "
<<
satelliteVelocity
[
0
]
<<
" "
<<
satelliteVelocity
[
1
]
<<
" "
<<
satelliteVelocity
[
2
]);
otbAppLogINFO
(
<<
"Inmaster Image : "
);
m_SarSensorModelAdapter
->
WorldToSatPositionAndVelocity
(
demGeoPoint
,
satellitePosition
[
0
],
satelliteVelocity
[
0
]);
otbAppLogINFO
(
<<
"Satellite Position : "
<<
satellitePosition
[
0
][
0
]
<<
" "
<<
satellitePosition
[
0
][
1
]
<<
" "
<<
satellitePosition
[
0
][
2
]);
otbAppLogINFO
(
<<
"Satellite Velocity : "
<<
satelliteVelocity
[
0
][
0
]
<<
" "
<<
satelliteVelocity
[
0
][
1
]
<<
" "
<<
satelliteVelocity
[
0
][
2
]);
searchPassageCloserToGround
(
satellitePosition
[
0
],
satelliteVelocity
[
0
],
incidence
[
0
],
xyzCart
,
demGeoPoint
);
otbAppLogINFO
(
<<
"Incidence : "
<<
incidence
[
0
]);
// Calculate lambda
double
radarFreq
=
atof
(
sarKWL
.
GetMetadataByKey
(
"support_data.radar_frequency"
).
c_str
());
const
double
C
=
299792458.
;
...
...
@@ -136,7 +145,22 @@ private:
float
lambda
=
C
/
radarFreq
;
otbAppLogINFO
(
<<
"Lambda : "
<<
lambda
);
// Incidence
loadOk
=
m_SarSensorModelAdapter
->
LoadState
(
sarKWL_target
);
otbAppLogINFO
(
<<
"Target Image : "
);
m_SarSensorModelAdapter
->
WorldToSatPositionAndVelocity
(
demGeoPoint
,
satellitePosition
[
1
],
satelliteVelocity
[
1
]);
otbAppLogINFO
(
<<
"Satellite Position : "
<<
satellitePosition
[
1
][
0
]
<<
" "
<<
satellitePosition
[
1
][
1
]
<<
" "
<<
satellitePosition
[
1
][
2
]);
otbAppLogINFO
(
<<
"Satellite Velocity : "
<<
satelliteVelocity
[
1
][
0
]
<<
" "
<<
satelliteVelocity
[
1
][
1
]
<<
" "
<<
satelliteVelocity
[
1
][
2
]);
searchPassageCloserToGround
(
satellitePosition
[
1
],
satelliteVelocity
[
1
],
incidence
[
1
],
xyzCart
,
demGeoPoint
);
otbAppLogINFO
(
<<
"Incidence : "
<<
incidence
[
1
]);
computeAltAmbig
(
xyzCart
,
satellitePosition
,
satelliteVelocity
,
lambda
,
incidence
);
}
void
searchPassageCloserToGround
(
SarSensorModelAdapter
::
Point3DType
&
satellitePosition
,
SarSensorModelAdapter
::
Point3DType
&
satelliteVelocity
,
double
&
incidence
,
SarSensorModelAdapter
::
Point3DType
xyzCart
,
SarSensorModelAdapter
::
Point3DType
demGeoPoint
){
// Incidence
SarSensorModelAdapter
::
Point3DType
R
;
R
[
0
]
=
xyzCart
[
0
]
-
satellitePosition
[
0
];
R
[
1
]
=
xyzCart
[
1
]
-
satellitePosition
[
1
];
R
[
2
]
=
xyzCart
[
2
]
-
satellitePosition
[
2
];
...
...
@@ -147,9 +171,8 @@ private:
double
normeCible
=
sqrt
(
xyzCart
[
0
]
*
xyzCart
[
0
]
+
xyzCart
[
1
]
*
xyzCart
[
1
]
+
xyzCart
[
2
]
*
xyzCart
[
2
]);
double
normeR
=
sqrt
(
R
[
0
]
*
R
[
0
]
+
R
[
1
]
*
R
[
1
]
+
R
[
2
]
*
R
[
2
]);
double
incidence
=
acos
((
normeS
*
normeS
-
normeR
*
normeR
-
normeCible
*
normeCible
)
/
incidence
=
acos
((
normeS
*
normeS
-
normeR
*
normeR
-
normeCible
*
normeCible
)
/
(
2
*
normeCible
*
normeR
)
)
*
180.
/
M_PI
;
otbAppLogINFO
(
<<
"Incidence : "
<<
incidence
);
// Calculate the local vectors
double
rm
[
3
];
...
...
@@ -161,6 +184,9 @@ private:
double
vecti
[
3
];
double
vectj
[
3
];
double
vectk
[
3
];
double
lon
=
demGeoPoint
[
0
];
double
lat
=
demGeoPoint
[
1
];
vecti
[
0
]
=
-
sin
(
lat
)
*
cos
(
lon
);
vecti
[
1
]
=
-
sin
(
lat
)
*
sin
(
lon
);
...
...
@@ -178,6 +204,68 @@ private:
otbAppLogINFO
(
<<
-
(
vecti
[
0
]
*
rm
[
0
]
+
vecti
[
1
]
*
rm
[
1
]
+
vecti
[
2
]
*
rm
[
2
])
/
normeRm
);
otbAppLogINFO
(
<<
-
(
vectj
[
0
]
*
rm
[
0
]
+
vectj
[
1
]
*
rm
[
1
]
+
vectj
[
2
]
*
rm
[
2
])
/
normeRm
);
otbAppLogINFO
(
<<
-
(
vectk
[
0
]
*
rm
[
0
]
+
vectk
[
1
]
*
rm
[
1
]
+
vectk
[
2
]
*
rm
[
2
])
/
normeRm
);
}
void
computeAltAmbig
(
SarSensorModelAdapter
::
Point3DType
xyzCart
,
SarSensorModelAdapter
::
Point3DType
*
satellitePosition
,
SarSensorModelAdapter
::
Point3DType
*
satelliteVelocity
,
double
lambda
,
double
*
incidence
){
otbAppLogINFO
(
<<
"Compute Alt Ambig"
);
// TODO : Get the type of phase (Bistatic by default)
double
factorBperp
=
1.0
;
double
factorHamb
=
2.0
;
double
rm
[
3
];
rm
[
0
]
=
-
(
xyzCart
[
0
]
-
satellitePosition
[
0
][
0
]);
rm
[
1
]
=
-
(
xyzCart
[
1
]
-
satellitePosition
[
0
][
1
]);
rm
[
0
]
=
-
(
xyzCart
[
2
]
-
satellitePosition
[
0
][
2
]);
double
re
[
3
];
re
[
0
]
=
-
(
xyzCart
[
0
]
-
satellitePosition
[
1
][
0
]);
re
[
1
]
=
-
(
xyzCart
[
1
]
-
satellitePosition
[
1
][
1
]);
re
[
0
]
=
-
(
xyzCart
[
2
]
-
satellitePosition
[
1
][
2
]);
// project the slave orbit slant range vector
// onto the master orbit zero doppler plane
double
vmNorm
=
sqrt
(
satelliteVelocity
[
0
][
0
]
*
satelliteVelocity
[
0
][
0
]
+
satelliteVelocity
[
0
][
1
]
*
satelliteVelocity
[
0
][
1
]
+
satelliteVelocity
[
0
][
2
]
*
satelliteVelocity
[
0
][
2
]);
// unitary vector with the same direction as the master velocity
// this vector is orthogonal to the master zero doppler plane
double
vmUnit
[
3
];
vmUnit
[
0
]
=
satelliteVelocity
[
0
][
0
]
/
vmNorm
;
vmUnit
[
1
]
=
satelliteVelocity
[
0
][
1
]
/
vmNorm
;
vmUnit
[
2
]
=
satelliteVelocity
[
0
][
2
]
/
vmNorm
;
// compute the component along vmUnit of the slave slant-range vector
// scalar product Re . vmUnit
double
reVmunit
=
re
[
0
]
*
vmUnit
[
0
]
+
re
[
1
]
*
vmUnit
[
1
]
+
re
[
2
]
*
vmUnit
[
2
];
// remove the along-track component
// this gives the projection of the slave
// slant-range vector onto the master zero-doppler plane
re
[
0
]
-=
reVmunit
*
vmUnit
[
0
];
re
[
1
]
-=
reVmunit
*
vmUnit
[
1
];
re
[
2
]
-=
reVmunit
*
vmUnit
[
2
];
double
normeRm
=
sqrt
(
rm
[
0
]
*
rm
[
0
]
+
rm
[
1
]
*
rm
[
1
]
+
rm
[
2
]
*
rm
[
2
]);
double
normeRe
=
sqrt
(
re
[
0
]
*
re
[
0
]
+
re
[
1
]
*
re
[
1
]
+
re
[
2
]
*
re
[
2
]);
// Scalar product RM.RE
double
scalarRmRe
=
rm
[
0
]
*
re
[
0
]
+
rm
[
1
]
*
re
[
1
]
+
rm
[
2
]
*
re
[
2
];
double
theta
=
acos
(
scalarRmRe
/
(
normeRm
*
normeRe
));
double
ye
=
normeRm
*
tan
(
theta
);
double
xe
=
normeRe
-
normeRm
/
cos
(
theta
);
if
(
incidence
[
1
]
>
incidence
[
0
]){
ye
*=
-
1.0
;
}
double
alpha
=
(
incidence
[
1
]
-
incidence
[
0
])
*
M_PI
/
180.
;
double
inc_moy
=
((
incidence
[
1
]
+
incidence
[
0
])
/
2
)
*
M_PI
/
180.
;
double
alt_amb
=
lambda
*
sin
(
inc_moy
)
/
(
factorHamb
*
tan
(
alpha
));
otbAppLogINFO
(
<<
"Incidence
\t
ALT AMBIG
\t
Radial
\t
Lateral"
);
otbAppLogINFO
(
<<
inc_moy
*
180.
/
M_PI
<<
"
\t\t
"
<<
alt_amb
<<
"
\t\t
"
<<
xe
<<
"
\t
"
<<
ye
/
factorBperp
);
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment