Newer
Older
/*
* Copyright (C) 2005-2018 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageList.h"
#include "otbImageListToVectorImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "otbSARStreamingMeanPhaseAndAzimutShiftImageFilter.h"
#include "otbSARESDOffsetsImageFilter.h"
#include "otbSARDopplerCentroidFreqImageFilter.h"
#include <iostream>
#include <string>
#include <fstream>
namespace otb
{
namespace Wrapper
{
class SARESD : public Application
{
public:
typedef SARESD Self;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro(Self);
itkTypeMacro(SARESD, otb::Wrapper::Application);
/** Filters typedef */
typedef otb::SARStreamingMeanPhaseAndAzimutShiftImageFilter<FloatVectorImageType> MeanFilter;;
typedef otb::ImageList<FloatImageType> ImageListType;
typedef otb::ImageListToVectorImageFilter<ImageListType,
FloatVectorImageType > ListConcatenerFilterType;
typedef otb::MultiToMonoChannelExtractROI<FloatVectorImageType::InternalPixelType,
FloatImageType::PixelType> ExtractROIFilterType;
typedef itk::SubtractImageFilter <FloatImageType, FloatImageType, FloatImageType> SubFilterType;
typedef ObjectList<ExtractROIFilterType> ExtractROIFilterListType;
typedef otb::SARDopplerCentroidFreqImageFilter<FloatImageType> DCFFilterType;
typedef otb::SARESDOffsetsImageFilter<FloatImageType> ESDFilterType;
private:
void DoInit() override
{
SetName("SARESD");
SetDescription("ESD processing to correct phase between two bursts.");
SetDocLongDescription("This application applies esd processing on two consecutives bursts"
" dimension.");
//Optional descriptors
SetDocLimitations("Only Sentinel 1 (IW and StripMap mode) and Cosmo products are supported for now.");
SetDocAuthors("OTB-Team");
SetDocSeeAlso(" ");
AddDocTag(Tags::SAR);
AddDocTag("DiapOTB");
//Parameter declarations
AddParameter(ParameterType_InputImage, "ininterfup", "First interferogram (Vector Image)");
SetParameterDescription("ininterfup", "First interferogram.");
AddParameter(ParameterType_InputImage, "ininterflow", "Second interferogram (Vector Image)");
SetParameterDescription("ininterflow", "Second interferogram.");
AddParameter(ParameterType_InputImage, "insar", "Input SAR image (for metadata only");
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
SetParameterDescription("insar", "SAR Image to extract SAR geometry.");
AddParameter(ParameterType_Int, "burstindex", "Index of first interferogram");
SetParameterDescription("burstindex", "Index of first interferogram.");
SetDefaultParameterInt("burstindex", 0);
AddParameter(ParameterType_Float, "threshold", "Threshold for correlation rate");
SetParameterDescription("threshold","Threshold for correlation rate.");
SetDefaultParameterFloat("threshold", 0.3);
SetMinimumParameterFloatValue("threshold", 0.0001);
MandatoryOff("threshold");
AddParameter(ParameterType_Int, "mlazi", "Averaging on azimut");
SetParameterDescription("mlazi","Averaging on azimut");
SetDefaultParameterInt("mlazi", 1);
SetMinimumParameterIntValue("mlazi", 1);
MandatoryOff("mlazi");
AddParameter(ParameterType_OutputImage, "out", "Output Tmp");
SetParameterDescription("out","Output Tmp.");
AddParameter(ParameterType_Float,"azishift","Azimut shift to correct phase jump into two consecutive interferograms");
SetParameterDescription("azishift", "Azimut shift to correct phase jump.");
SetParameterRole("azishift", Role_Output);
SetDefaultParameterFloat("azishift", 0);
AddRAMParameter();
SetDocExampleParameterValue("ininterfup","./interferogram_burst0.tiff");
SetDocExampleParameterValue("ininterflow", "./interferogram_burst1.tiff");
SetDocExampleParameterValue("insar","s1a-iw1-slc-vv-20150821t152433-20150821t152458-007363-00a1e0-004.tiff");
SetDocExampleParameterValue("burstindex", "0");
SetDocExampleParameterValue("out","phaseDiff.tif");
}
void DoUpdateParameters() override
{
// Nothing // TODO: o do here : all parameters are independent
}
void DoExecute() override
{
////////// Instanciate all filters //////////
ExtractROIFilterType::Pointer extractorUp = ExtractROIFilterType::New();
ExtractROIFilterType::Pointer extractorLow = ExtractROIFilterType::New();
ExtractROIFilterType::Pointer extractorCohUp = ExtractROIFilterType::New();
ExtractROIFilterType::Pointer extractorCohLow = ExtractROIFilterType::New();
ExtractROIFilterType::Pointer extractorIsDataUp = ExtractROIFilterType::New();
ExtractROIFilterType::Pointer extractorIsDataLow = ExtractROIFilterType::New();
ExtractROIFilterType::Pointer extractorDcfUp = ExtractROIFilterType::New();
ExtractROIFilterType::Pointer extractorDcfLow = ExtractROIFilterType::New();
MeanFilter::Pointer meanPhase = MeanFilter::New();
meanPhase->SetPhaseMean(true);
MeanFilter::Pointer meanAziShift = MeanFilter::New();
meanAziShift->SetPhaseMean(false);
SubFilterType::Pointer subPhase = SubFilterType::New();
ListConcatenerFilterType::Pointer m_Concatener = ListConcatenerFilterType::New();
ImageListType::Pointer m_ImageList = ImageListType::New();
ListConcatenerFilterType::Pointer m_Concatener1 = ListConcatenerFilterType::New();
ImageListType::Pointer m_ImageList1 = ImageListType::New();
DCFFilterType::Pointer dcfUp = DCFFilterType::New();
DCFFilterType::Pointer dcfLow = DCFFilterType::New();
ESDFilterType::Pointer esdFilter = ESDFilterType::New();
////////// Get and Check inputs //////////
// Get Number of burst index
float threshold = GetParameterFloat("threshold");
int ml_azi = GetParameterInt("mlazi");
int burstindex = GetParameterInt("burstindex");
otbAppLogINFO(<< "burst index : " << burstindex);
otbAppLogINFO(<< "ML factor for azimut dimension : " << ml_azi);
otbAppLogINFO(<< "Threshold for phase difference : " << threshold);
// Get input interferograms
FloatVectorImageType::Pointer InterfUpPtr = GetParameterFloatVectorImage("ininterfup");
FloatVectorImageType::Pointer InterfLowPtr = GetParameterFloatVectorImage("ininterflow");
// Check number of components (at least three : modulus, phase and coherency)
int nbComponentsUp = InterfUpPtr->GetNumberOfComponentsPerPixel();
int nbComponentsLow = InterfLowPtr->GetNumberOfComponentsPerPixel();
if (nbComponentsUp < 3 || nbComponentsLow < 3 || nbComponentsUp != nbComponentsLow)
{
otbAppLogFATAL(<< "Input interferograms have to contain at least three components");
}
// Check invalid Pixel Key
const bool inputWithInvalidPixels1 = InterfUpPtr->GetImageMetadata().Has("invalid_pixels")
&& InterfUpPtr->GetImageMetadata()["invalid_pixels"] == "yes";
const bool inputWithInvalidPixels2 = InterfLowPtr->GetImageMetadata().Has("invalid_pixels")
&& InterfLowPtr->GetImageMetadata()["invalid_pixels"] == "yes";
if (inputWithInvalidPixels1!= inputWithInvalidPixels2)
{
// Throw an execption
otbAppLogFATAL(<< "Incoherency between input images (for invalid_pixels key).");
}
////////// Determine overlap area between the two bursts //////////
std::pair<unsigned long,unsigned long> linesUp;
std::pair<unsigned long,unsigned long> linesLow;
std::pair<unsigned long,unsigned long> samplesUp;
std::pair<unsigned long,unsigned long> samplesLow;
meanPhase->getOverlapLinesAndSamples(GetParameterComplexFloatImage("insar")->GetImageMetadata(),
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
linesUp, linesLow, samplesUp, samplesLow, burstindex,
inputWithInvalidPixels1);
// Check origin (msut have the whole burst/interferogram)
InterfUpPtr->UpdateOutputInformation();
InterfLowPtr->UpdateOutputInformation();
unsigned long originOffset_samplesUp = static_cast<long>(InterfUpPtr->GetOrigin()[0]-0.5);
unsigned long originOffset_linesUp = static_cast<long>(InterfUpPtr->GetOrigin()[1]-0.5);
unsigned long originOffset_samplesLow = static_cast<long>(InterfLowPtr->GetOrigin()[0]-0.5);
unsigned long originOffset_linesLow = static_cast<long>(InterfLowPtr->GetOrigin()[1]-0.5);
if (originOffset_samplesLow != 0 || originOffset_linesLow != 0)
{
otbAppLogFATAL(<< "Input interferogram (Low) have not the expected origin (0,0)");
}
if (originOffset_samplesUp != 0 || originOffset_linesUp != 0)
{
otbAppLogFATAL(<< "Input interferogram (Up) have not the expected origin (0,0)");
}
// Retrieve start and size for each burst
unsigned long minSamples_Up = std::min(samplesUp.second,
static_cast<unsigned long>(InterfUpPtr->GetLargestPossibleRegion().GetSize()[0]-1));
unsigned long minLines_Up = std::min(linesUp.second,
static_cast<unsigned long>(InterfUpPtr->GetLargestPossibleRegion().GetSize()[1]-1));
unsigned long minSamples_Low = std::min(samplesLow.second,
static_cast<unsigned long>(InterfLowPtr->GetLargestPossibleRegion().GetSize()[0]-1));
unsigned long minLines_Low = std::min(linesLow.second,
static_cast<unsigned long>(InterfLowPtr->GetLargestPossibleRegion().GetSize()[1]-1));
unsigned long startL_Up = linesUp.first;
unsigned long sizeL_Up = minLines_Up - linesUp.first + 1;
unsigned long startS_Up = samplesUp.first;
unsigned long sizeS_Up = minSamples_Up - samplesUp.first + 1;
unsigned long startL_Low = linesLow.first;
unsigned long sizeL_Low = minLines_Low - linesLow.first + 1;
unsigned long startS_Low = samplesLow.first;
unsigned long sizeS_Low = minSamples_Low - samplesLow.first + 1;
////////// Extract Phase for overlap area //////////
// Set the channel to extract : Phase = 2
extractorUp->SetInput(InterfUpPtr);
extractorUp->SetChannel(2);
extractorUp->SetStartX(startS_Up);
extractorUp->SetStartY(startL_Up);
extractorUp->SetSizeX(sizeS_Up);
extractorUp->SetSizeY(sizeL_Up);
extractorUp->UpdateOutputInformation();
extractorLow->SetInput(InterfLowPtr);
extractorLow->SetChannel(2);
extractorLow->SetStartX(startS_Low);
extractorLow->SetStartY(startL_Low);
extractorLow->SetSizeX(sizeS_Low);
extractorLow->SetSizeY(sizeL_Low);
extractorLow->UpdateOutputInformation();
//////////// Subtract phase ////////////
subPhase->SetCoordinateTolerance(10e08);
subPhase->SetInput1(extractorUp->GetOutput());
subPhase->SetInput2(extractorLow->GetOutput());
//////////// Extract Coherency (Coherency = 3) ////////////
extractorCohUp->SetInput(InterfUpPtr);
extractorCohUp->SetChannel(3);
extractorCohUp->SetStartX(startS_Up);
extractorCohUp->SetStartY(startL_Up);
extractorCohUp->SetSizeX(sizeS_Up);
extractorCohUp->SetSizeY(sizeL_Up);
extractorCohUp->UpdateOutputInformation();
extractorCohLow->SetInput(InterfLowPtr);
extractorCohLow->SetChannel(3);
extractorCohLow->SetStartX(startS_Low);
extractorCohLow->SetStartY(startL_Low);
extractorCohLow->SetSizeX(sizeS_Low);
extractorCohLow->SetSizeY(sizeL_Low);
extractorCohLow->UpdateOutputInformation();
//////////// Extract isData (isData Channel = 4) ////////////
extractorIsDataUp->SetInput(InterfUpPtr);
extractorIsDataUp->SetChannel(4);
extractorIsDataUp->SetStartX(startS_Up);
extractorIsDataUp->SetStartY(startL_Up);
extractorIsDataUp->SetSizeX(sizeS_Up);
extractorIsDataUp->SetSizeY(sizeL_Up);
extractorIsDataUp->UpdateOutputInformation();
extractorIsDataLow->SetInput(InterfLowPtr);
extractorIsDataLow->SetChannel(4);
extractorIsDataLow->SetStartX(startS_Low);
extractorIsDataLow->SetStartY(startL_Low);
extractorIsDataLow->SetSizeX(sizeS_Low);
extractorIsDataLow->SetSizeY(sizeL_Low);
extractorIsDataLow->UpdateOutputInformation();
//////////// Concatenation of phase difference with coherency ////////////
m_ImageList->PushBack( subPhase->GetOutput() );
m_ImageList->PushBack( extractorCohUp->GetOutput() );
m_ImageList->PushBack( extractorCohLow->GetOutput() );
m_ImageList->PushBack( extractorIsDataUp->GetOutput() );
m_ImageList->PushBack( extractorIsDataLow->GetOutput() );
m_Concatener->SetInput( m_ImageList );
////////// Mean of phase difference //////////
meanPhase->SetInput(m_Concatener->GetOutput());
meanPhase->SetThreshold(threshold);
Gaëlle USSEGLIO
committed
// Adapt streaming with ram parameter (default 256 MB)
meanPhase->GetStreamer()->SetAutomaticStrippedStreaming(GetParameterInt("ram"));
// Doppler Centroid Filter
dcfUp->SetInput(extractorUp->GetOutput());
dcfLow->SetInput(extractorLow->GetOutput());
// Extract overlap area into Doppler Centroid outputs
// extractorDcfUp->SetInput(dcfUp->GetOutput());
// extractorDcfUp->SetChannel(1);
// extractorDcfUp->SetStartX(startS_Up);
// extractorDcfUp->SetStartY(startL_Up);
// extractorDcfUp->SetSizeX(sizeS_Up);
// extractorDcfUp->SetSizeY(sizeL_Up);
// extractorDcfUp->UpdateOutputInformation();
// extractorDcfLow->SetInput(dcfLow->GetOutput());
// extractorDcfLow->SetChannel(1);
// extractorDcfLow->SetStartX(startS_Low);
// extractorDcfLow->SetStartY(startL_Low);
// extractorDcfLow->SetSizeX(sizeS_Low);
// extractorDcfLow->SetSizeY(sizeL_Low);
// extractorDcfLow->UpdateOutputInformation();
// //////////// ESD Filter ////////////
esdFilter->SetPhaseDiffMean(meanPhase->GetMean());
//double aziInterval = std::stod(InterfUpPtr->GetImageMetadata().GetMetadataByKey("line_time_interval"));
double aziInterval = boost::any_cast<const otb::SARParam&>(InterfUpPtr->GetImageMetadata()[otb::MDGeom::SAR]).azimuthTimeInterval.TotalSeconds();
esdFilter->SetAziTimeInt(aziInterval);
//esdFilter->SetInput(subPhase->GetOutput());
esdFilter->SetInput1(dcfUp->GetOutput());
esdFilter->SetInput2(dcfLow->GetOutput());
esdFilter->SetCoordinateTolerance(10e08);
//////////// Concatenation with coherency ////////////
m_ImageList1->PushBack( esdFilter->GetOutput() );
m_ImageList1->PushBack( extractorCohUp->GetOutput() );
m_ImageList1->PushBack( extractorCohLow->GetOutput() );
m_Concatener1->SetInput( m_ImageList1 );
////////// Mean of azimut shift ///////////
meanAziShift->SetInput(m_Concatener1->GetOutput());
Gaëlle USSEGLIO
committed
// Adapt streaming with ram parameter (default 256 MB)
meanAziShift->GetStreamer()->SetAutomaticStrippedStreaming(GetParameterInt("ram"));
meanAziShift->Update();
////////// Outputs : Image of azimut shift (for overlap area) and mean of azimut shift ////////////
//SetParameterOutputImage("out", dcfLow->GetOutput());
SetParameterOutputImage("out", subPhase->GetOutput());
//SetParameterOutputImage("out", esdFilter->GetOutput());
SetParameterFloat("azishift", meanAziShift->GetMean());
RegisterPipeline();
}
// Vector for filters
std::vector<itk::ProcessObject::Pointer> m_Ref;
};
}
}
OTB_APPLICATION_EXPORT(otb::Wrapper::SARESD)