Skip to content
Snippets Groups Projects
Commit d080d70b authored by Cyrille Valladeau's avatar Cyrille Valladeau
Browse files

Markov, encore et toujours.

parent aeb09662
No related branches found
No related tags found
No related merge requests found
......@@ -49,19 +49,9 @@ class ITK_EXPORT MRFEnergy : public itk::Object
typedef itk::Array< double > ParametersType;
/** Le new avait disparu...*/
itkNewMacro(Self);
itkTypeMacro(MRFEnergy,itk::Object);
/** Utilisation des accesseur itk*/
/*
void SetNumberOfParameters(unsigned int nb)
{ m_NumberOfParameters = nb; this->Modified(); }
unsigned int GetNumberOfParameters(void) const
{ return m_NumberOfParameters; }
*/
itkSetMacro(NumberOfParameters, unsigned int);
itkGetConstMacro(NumberOfParameters, unsigned int);
......@@ -70,7 +60,6 @@ class ITK_EXPORT MRFEnergy : public itk::Object
{
return this->m_Parameters;
}
void SetParameters( const ParametersType & parameters )
{
......@@ -96,11 +85,7 @@ class ITK_EXPORT MRFEnergy : public itk::Object
// }
}
/** Ne peut allouer un objet de type MRF::Energy parce que les fonctions virtuelles suivantes sont abstraites*/
virtual double GetSingleValue(const InputImagePixelType & value1, const LabelledImagePixelType & value2)
{
return 0;
}
virtual double GetSingleValue(const InputImagePixelType & value1, const LabelledImagePixelType & value2) = 0;
double GetValue(const InputImagePixelType & value1, const LabelledImagePixelType & value2)
{
......@@ -174,27 +159,21 @@ class ITK_EXPORT MRFEnergy<TInput2,TInput2> : public itk::Object
typedef itk::ConstNeighborhoodIterator< LabelledImageType > LabelledNeighborhoodIterator;
typedef itk::Array< double > ParametersType;
/** Le new avait disparu...*/
itkNewMacro(Self);
itkTypeMacro(MRFEnergy,itk::Object);
/** Utilisation des accesseur itk*/
/*
void SetNumberOfParameters(unsigned int nb)
{ m_NumberOfParameters = nb; this->Modified(); }
unsigned int GetNumberOfParameters(void) const
{ return m_NumberOfParameters; }
*/
itkSetMacro(NumberOfParameters, unsigned int);
itkGetConstMacro(NumberOfParameters, unsigned int);
// Get the parameters
const ParametersType& GetParameters( void ) const
{
return this->m_Parameters;
}
void SetParameters( const ParametersType & parameters )
{
......@@ -220,11 +199,7 @@ class ITK_EXPORT MRFEnergy<TInput2,TInput2> : public itk::Object
}*/
}
/** Ne peut allouer un objet de type MRF::Energy parce que les fonctions virtuelles suivantes sont abstraites*/
virtual double GetSingleValue(const LabelledImagePixelType & value1, const LabelledImagePixelType & value2)
{
return 0;
}
virtual double GetSingleValue(const LabelledImagePixelType & value1, const LabelledImagePixelType & value2) = 0;
double GetValue(const LabelledImagePixelType & value1, const LabelledImagePixelType & value2)
{
......
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _otbMRFEnergyGaussian_h
#define _otbMRFEnergyGaussian_h
#include "otbMRFEnergy.h"
#include "otbMath.h"
#define M_SQUARE(x) ((x)*(x))
namespace otb
{
/**
* \class MRFEnergyGaussian
* \brief This is the implementation of the Gaussian model for Markov classification.
*
* This is the implementation of the Gaussian model for Markov classification, to be used for
* data fidelity. Energy is:
* \f[ U(x_s,x_t) = -\beta \textrm{ if } x_s = x_t \f]
* \f[ U(x_s,x_t) = +\beta \textrm{ if } x_s \neq x_t \f]
* with
* - \f$ x_s \f$ the label on site s
* - \f$ y_s \f$ the value on the reference image
* - \f$ \sigma^2_{x_s} \f$ the noise variance
*/
template< class TInput1, class TInput2>
class ITK_EXPORT MRFEnergyGaussian:public MRFEnergy< TInput1, TInput2>
{
public:
typedef MRFEnergyGaussian Self;
typedef MRFEnergy< TInput1, TInput2> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef TInput1 InputImageType;
typedef TInput2 LabelledImageType;
typedef typename InputImageType::PixelType InputImagePixelType;
typedef typename LabelledImageType::PixelType LabelledImagePixelType;
typedef itk::Array< double > ParametersType;
itkTypeMacro(MRFEnergyGaussian, MRFEnergy);
itkNewMacro(Self);
double GetSingleValue(const InputImagePixelType & value1, const LabelledImagePixelType & value2)
{
return M_SQUARE((static_cast<double>(value1))
- (static_cast<double>(value2)) );
}
protected:
// The constructor and destructor.
MRFEnergyGaussian() {
this->m_NumberOfParameters = 0;
this->m_Parameters.SetSize(this->m_NumberOfParameters);
};
virtual ~MRFEnergyGaussian() {};
};
}
#endif
......@@ -40,16 +40,8 @@ class ITK_EXPORT MRFOptimizer : public itk::Object
typedef itk::SmartPointer<const Self> ConstPointer;
typedef itk::Array< double > ParametersType;
/** Le new avait disparu donc plus de ::Pointer declare...*/
itkNewMacro(Self);
itkTypeMacro(MRFOptimizer, itk::Object);
/** Utilmisation des accessuers itk*/
/*
unsigned int GetNumberOfParameters(void) const
{ return m_NumberOfParameters; }
*/
itkGetConstMacro(NumberOfParameters, unsigned int);
// Get the parameters
......@@ -82,11 +74,7 @@ class ITK_EXPORT MRFOptimizer : public itk::Object
// }
}
/** Ne peut allouer un objet de type MRF::Optimizer parce que les fonctions virtuelles suivantes sont abstraites*/
virtual bool Compute(double deltaEnergy)
{
return 0;
}
virtual bool Compute(double deltaEnergy) = 0;
protected:
MRFOptimizer()
......
......@@ -23,84 +23,80 @@
namespace otb
{
/**
* \class MRFSampler
* \brief This is the base class for sampler methods used in the MRF framework.
*
* Derived class must reimplement Compute() method.
*
*/
template< class TInput1, class TInput2>
class ITK_EXPORT MRFSampler:public itk::Object
{
public:
typedef MRFSampler Self;
typedef itk::Object Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef itk::ConstNeighborhoodIterator< TInput1 > InputImageNeighborhoodIterator;
typedef typename TInput1::PixelType InputImagePixelType;
typedef itk::NeighborhoodIterator< TInput2 > LabelledImageNeighborhoodIterator;
typedef typename TInput2::PixelType LabelledImagePixelType;
typedef MRFEnergy<TInput1, TInput2> EnergyFidelityType;
typedef MRFEnergy<TInput2, TInput2> EnergyRegularizationType;
typedef typename EnergyFidelityType::Pointer EnergyFidelityPointer;
typedef typename EnergyRegularizationType::Pointer EnergyRegularizationPointer;
itkTypeMacro(MRFSampler,Object);
itkSetMacro(NumberOfClasses, unsigned int);
itkGetMacro(NumberOfClasses, unsigned int);
itkSetMacro(Lambda, double);
itkGetMacro(Lambda, double);
itkGetMacro(DeltaEnergy, double);
itkGetMacro(Value, LabelledImagePixelType);
/**Accesseur pour les tests*/
itkGetConstMacro(EnergyBefore, double);
itkGetConstMacro(EnergyAfter, double);
void SetEnergyRegularization( EnergyRegularizationPointer enerReg ){ m_EnergyRegularization=enerReg; this->Modified(); };
void SetEnergyFidelity( EnergyFidelityPointer enerFid ){ m_EnergyFidelity=enerFid; this->Modified(); };
/*
itkSetObjectMacro( EnergyRegularization, EnergyRegularizationPointer);
itkSetObjectMacro( EnergyFidelity, EnergyFidelityPointer);
*/
virtual int Compute( const InputImageNeighborhoodIterator & itData,
const LabelledImageNeighborhoodIterator & itRegul) = 0;
protected:
unsigned int m_NumberOfClasses;
double m_EnergyBefore;
double m_EnergyAfter;
double m_DeltaEnergy;
double m_EnergyCurrent;
double m_Lambda;
LabelledImagePixelType m_Value;
EnergyRegularizationPointer m_EnergyRegularization;
EnergyFidelityPointer m_EnergyFidelity;
LabelledImagePixelType m_ValueCurrent;
/**
* \class MRFSampler
* \brief This is the base class for sampler methods used in the MRF framework.
*
* Derived class must reimplement Compute() method.
*
*/
template< class TInput1, class TInput2>
class ITK_EXPORT MRFSampler:public itk::Object
{
public:
typedef MRFSampler Self;
typedef itk::Object Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef itk::ConstNeighborhoodIterator< TInput1 > InputImageNeighborhoodIterator;
typedef typename TInput1::PixelType InputImagePixelType;
typedef itk::NeighborhoodIterator< TInput2 > LabelledImageNeighborhoodIterator;
typedef typename TInput2::PixelType LabelledImagePixelType;
typedef MRFEnergy<TInput1, TInput2> EnergyFidelityType;
typedef MRFEnergy<TInput2, TInput2> EnergyRegularizationType;
protected:
// The constructor and destructor.
MRFSampler() {}
virtual ~MRFSampler() {}
typedef typename EnergyFidelityType::Pointer EnergyFidelityPointer;
typedef typename EnergyRegularizationType::Pointer EnergyRegularizationPointer;
};
itkTypeMacro(MRFSampler,Object);
itkSetMacro(NumberOfClasses, unsigned int);
itkGetMacro(NumberOfClasses, unsigned int);
itkSetMacro(Lambda, double);
itkGetMacro(Lambda, double);
itkGetMacro(DeltaEnergy, double);
itkGetMacro(Value, LabelledImagePixelType);
// Accessor for validation tests pour les tests
itkGetConstMacro(EnergyBefore, double);
itkGetConstMacro(EnergyAfter, double);
itkSetObjectMacro( EnergyRegularization, EnergyRegularizationType);
itkSetObjectMacro( EnergyFidelity, EnergyFidelityType);
virtual int Compute( const InputImageNeighborhoodIterator & itData,
const LabelledImageNeighborhoodIterator & itRegul) = 0;
protected:
unsigned int m_NumberOfClasses;
double m_EnergyBefore;
double m_EnergyAfter;
double m_DeltaEnergy;
double m_EnergyCurrent;
double m_Lambda;
LabelledImagePixelType m_Value;
EnergyRegularizationPointer m_EnergyRegularization;
EnergyFidelityPointer m_EnergyFidelity;
LabelledImagePixelType m_ValueCurrent;
protected:
// The constructor and destructor.
MRFSampler() {}
virtual ~MRFSampler() {}
};
}
......
......@@ -69,6 +69,11 @@ namespace otb
inline int Compute( const InputImageNeighborhoodIterator & itData,
const LabelledImageNeighborhoodIterator & itRegul)
{
if (this->m_NumberOfClasses == 0)
{
itkExceptionMacro(<<"NumberOfClasse has to be greater than 0.");
}
this->m_EnergyBefore=this->m_EnergyFidelity->GetValue(itData, itRegul.GetCenterPixel());
this->m_EnergyBefore += this->m_Lambda
* this->m_EnergyRegularization->GetValue(itRegul, itRegul.GetCenterPixel());
......@@ -76,9 +81,7 @@ namespace otb
//Try all possible value (how to be generic ?)
this->m_EnergyAfter = this->m_EnergyBefore; //default values to current one
this->m_Value = itRegul.GetCenterPixel();
// for (LabelledImagePixelType valueCurrent = 0;
// valueCurrent< this->m_NumberOfClasses; ++valueCurrent)
// {
LabelledImagePixelType valueCurrent = 0;
while( valueCurrent<static_cast<LabelledImagePixelType>(this->GetNumberOfClasses()) && valueCurrent != itk::NumericTraits<LabelledImagePixelType>::max() )
{
......@@ -93,6 +96,7 @@ namespace otb
valueCurrent++;
}
this->m_DeltaEnergy= this->m_EnergyAfter - this->m_EnergyBefore;
return 0;
......
......@@ -78,6 +78,10 @@ namespace otb
inline int Compute( const InputImageNeighborhoodIterator & itData,
const LabelledImageNeighborhoodIterator & itRegul)
{
if (this->m_NumberOfClasses == 0)
{
itkExceptionMacro(<<"NumberOfClasse has to be greater than 0.");
}
this->m_EnergyBefore = this->m_EnergyFidelity->GetValue(itData, itRegul.GetCenterPixel());
this->m_EnergyBefore += this->m_Lambda
......@@ -90,47 +94,41 @@ namespace otb
//Compute probability for each possibility
double totalProba=0.0;
for (LabelledImagePixelType valueCurrent = 0;
valueCurrent < static_cast<LabelledImagePixelType>(this->m_NumberOfClasses); ++valueCurrent)
valueCurrent < static_cast<LabelledImagePixelType>(this->m_NumberOfClasses);
++valueCurrent)
{
this->m_EnergyCurrent = this->m_EnergyFidelity->GetValue(itData, valueCurrent);
this->m_EnergyCurrent += this->m_Lambda
* this->m_EnergyRegularization->GetValue(itRegul, valueCurrent);
energy[static_cast<unsigned int>(valueCurrent)] = this->m_EnergyCurrent;
repartitionFunction[static_cast<unsigned int>(valueCurrent)] = vcl_exp(-this->m_EnergyCurrent)+totalProba;
totalProba = repartitionFunction[static_cast<unsigned int>(valueCurrent)];
energy[static_cast<unsigned int>(valueCurrent)]
= this->m_EnergyCurrent;
repartitionFunction[static_cast<unsigned int>(valueCurrent)]
= vcl_exp(-this->m_EnergyCurrent)+totalProba;
totalProba
= repartitionFunction[static_cast<unsigned int>(valueCurrent)];
}
//Pick a value according to probability
double select = (rand()/(double(RAND_MAX)+1) * totalProba);
/*** POUR EVITER LE SEGFAULT : on sort de la taille du tableau si la condition du break n'est pas respectee...*/
/*
LabelledImagePixelType valueCurrent = 0;
for (valueCurrent = 0;
valueCurrent < static_cast<LabelledImagePixelType>(this->m_NumberOfClasses); ++valueCurrent)
{
if (repartitionFunction[static_cast<unsigned int>(valueCurrent)] > select) break;
}
*/
unsigned int valueCurrent = 0;
unsigned int valueCurrent = 0;
while( valueCurrent<this->GetNumberOfClasses() && repartitionFunction[valueCurrent] <= select)
{
valueCurrent++;
}
// TODO avoir la confirmation cnesienne : premier indince ou dernier
if ( valueCurrent==this->GetNumberOfClasses() )
{
valueCurrent = 0;
valueCurrent = this->GetNumberOfClasses()-1;
}
if ( this->m_Value != static_cast<LabelledImagePixelType>(valueCurrent))
{
this->m_Value = static_cast<LabelledImagePixelType>(valueCurrent);
this->m_EnergyAfter = energy[valueCurrent];
this->m_EnergyAfter = energy[static_cast<unsigned int>(valueCurrent)];
}
this->m_DeltaEnergy= this->m_EnergyAfter - this->m_EnergyBefore;
......@@ -145,8 +143,8 @@ namespace otb
protected:
// The constructor and destructor.
MRFSamplerRandomMAP() {
energy=NULL;
repartitionFunction=NULL;
energy=NULL;
repartitionFunction=NULL;
};
virtual ~MRFSamplerRandomMAP() {
if (energy != NULL) free(energy);
......
......@@ -33,7 +33,7 @@
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhood.h"
#include "itkSize.h"
#include "itkRandomImageSource.h"
#include "otbMRFEnergy.h"
#include "otbMRFOptimizer.h"
#include "otbMRFSampler.h"
......@@ -177,17 +177,17 @@ public itk::ImageToImageFilter<TInputImage,TClassifiedImage>
************ ACCESSORS ************
*/
void SetEnergyRegularization( EnergyRegularizationPointer enerReg ){ m_EnergyRegularization=enerReg; this->Modified(); };
EnergyRegularizationPointer GetEnergyRegularization(){ return m_EnergyRegularization; };
void SetEnergyFidelity( EnergyFidelityPointer enerFid ){ m_EnergyFidelity=enerFid; this->Modified(); };
EnergyFidelityPointer GetEnergyFidelity(){ return m_EnergyFidelity; };
/*
// void SetEnergyRegularization( EnergyRegularizationPointer enerReg ){ m_EnergyRegularization=enerReg; this->Modified(); };
// EnergyRegularizationPointer GetEnergyRegularization(){ return m_EnergyRegularization; };
// void SetEnergyFidelity( EnergyFidelityPointer enerFid ){ m_EnergyFidelity=enerFid; this->Modified(); };
// EnergyFidelityPointer GetEnergyFidelity(){ return m_EnergyFidelity; };
itkSetObjectMacro( EnergyRegularization, EnergyRegularizationType);
itkGetObjectMacro( EnergyRegularization, EnergyRegularizationType);
itkSetObjectMacro( EnergyFidelity, EnergyFidelityType);
itkGetObjectMacro( EnergyFidelity, EnergyFidelityType);
*/
itkSetObjectMacro( Sampler, SamplerType);
......
......@@ -320,6 +320,8 @@ MarkovRandomFieldFilter<TInputImage, TClassifiedImage>
outImageIt.Set( randomvalue );
++outImageIt;
}// end while
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment