Skip to content
Snippets Groups Projects
Commit aaf76e73 authored by Manuel Grizonnet's avatar Manuel Grizonnet
Browse files

DOC: fix latex errors in advanced textures formulas

parent 42719d97
No related branches found
No related tags found
No related merge requests found
...@@ -69,8 +69,10 @@ Note that more features are available in ...@@ -69,8 +69,10 @@ Note that more features are available in
\doxygen{otb}{ScalarImageToAdvancedTexturesFilter} computes 10 advanced \doxygen{otb}{ScalarImageToAdvancedTexturesFilter} computes 10 advanced
texture features presented presented in table~\ref{tab:haralickAdvancedFeatures}, texture features presented presented in table~\ref{tab:haralickAdvancedFeatures},
where $ \mu = $ (weighted pixel average) = $ \sum_{i, j}i \cdot g(i, j) = where $ \mu = $ (weighted pixel average) = $ \sum_{i, j}i \cdot g(i, j) =
\sum_{i,j}j \cdot g(i, j) $ (due to matrix symmetry), and $ \g_{x+y}(k) = \sum_{i,j}j \cdot g(i, j) $ (due to matrix symmetry).
\sum_{i}\sum_{j}g(i) $ where $ i+j=k $ and $ k = 2, 3, .., 2N_[g} $ and $ \g_{x-y}(k) = \sum_{i}\sum_{j}g(i) $ where $ i-j=k $ and $ k = 0, 1, ..,N_[g}-1 $ $N_{g}$ : Number of distinct gray levels in the quantized image.
$ g_{x+y}(k) = \sum_{i}\sum_{j}g(i) $ where $ i+j=k $ and $ k = 2, 3, .., 2N_{g} $ and $ g_{x-y}(k) = \sum_{i}\sum_{j}g(i) $ where $ i-j=k $ and $ k = 0, 1, ..,N_{g}-1 $
\begin{table} \begin{table}
\begin{center} \begin{center}
......
...@@ -67,9 +67,10 @@ namespace otb ...@@ -67,9 +67,10 @@ namespace otb
* Above, \f$ \mu = \f$ (weighted pixel average) \f$ = \sum_{i, j}i \cdot g(i, j) = * Above, \f$ \mu = \f$ (weighted pixel average) \f$ = \sum_{i, j}i \cdot g(i, j) =
* \sum_{i, j}j \cdot g(i, j) \f$ (due to matrix simmetry), and * \sum_{i, j}j \cdot g(i, j) \f$ (due to matrix simmetry), and
* *
* \f$ \g_{x+y}(k) = \sum_{i}\sum_{j}g(i)\f$ where \f$ i+j=k \f$ and \f$ k = 2, 3, .., 2N_[g} \f$ and * \f$ g_{x+y}(k) = \sum_{i}\sum_{j}g(i)\f$ where \f$ i+j=k \f$ and \f$ k = 2, 3, .., 2N_{g} \f$ and
* *
* \f$ \g_{x-y}(k) = \sum_{i}\sum_{j}g(i)\f$ where \f$ i-j=k \f$ and \f$ k = 0, 1, .., N_[g}-1 \f$ * \f$ g_{x-y}(k) = \sum_{i}\sum_{j}g(i)\f$ where \f$ i-j=k \f$ and \f$ k = 0, 1, .., N_{g}-1 \f$
* \f$N_{g}\f$ : Number of distinct gray levels in the quantized image.
* *
* References: * References:
* *
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment