Newer
Older
Manuel Grizonnet
committed
/*=========================================================================
Manuel Grizonnet
committed
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Manuel Grizonnet
committed
Manuel Grizonnet
committed
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
Manuel Grizonnet
committed
Manuel Grizonnet
committed
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
Manuel Grizonnet
committed
Manuel Grizonnet
committed
=========================================================================*/
#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"
Manuel Grizonnet
committed
#include "otbImageToLuminanceImageFilter.h"
#include "otbLuminanceToReflectanceImageFilter.h"
#include "otbLuminanceToImageImageFilter.h"
#include "otbReflectanceToLuminanceImageFilter.h"
Manuel Grizonnet
committed
#include "otbReflectanceToSurfaceReflectanceImageFilter.h"
#include "otbMultiplyByScalarImageFilter.h"
#include "otbClampVectorImageFilter.h"
#include "otbSurfaceAdjacencyEffect6SCorrectionSchemeFilter.h"
#include "otbGroundSpacingImageFunction.h"
#include "vnl/vnl_random.h"

Julien Michel
committed
#include <fstream>
#include <sstream>
#include <vector>
#include <itkVariableLengthVector.h>
Manuel Grizonnet
committed
namespace otb
{
enum
{
Level_IM_TOA,
Level_TOA_IM,
Level_TOC
};
enum
{
Aerosol_NoAerosol,
Aerosol_Continental,
Aerosol_Maritime,
Aerosol_Urban,
Aerosol_Desertic,
};
namespace Wrapper
{
class OpticalCalibration : public Application
{
public:
/** Standard class typedefs. */
typedef OpticalCalibration Self;
typedef Application Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Standard macro */
itkNewMacro(Self);
itkTypeMacro(OpticalCalibration, Application);
typedef ImageToLuminanceImageFilter<FloatVectorImageType,
DoubleVectorImageType> ImageToLuminanceImageFilterType;
typedef LuminanceToReflectanceImageFilter<DoubleVectorImageType,
DoubleVectorImageType> LuminanceToReflectanceImageFilterType;
typedef LuminanceToImageImageFilter<DoubleVectorImageType,
DoubleVectorImageType> LuminanceToImageImageFilterType;
typedef ReflectanceToLuminanceImageFilter<FloatVectorImageType,
DoubleVectorImageType> ReflectanceToLuminanceImageFilterType;
typedef otb::MultiplyByScalarImageFilter<DoubleVectorImageType,
DoubleVectorImageType> ScaleFilterOutDoubleType;
typedef otb::ClampVectorImageFilter<DoubleVectorImageType,
DoubleVectorImageType> ClampFilterType;
Manuel Grizonnet
committed
typedef ReflectanceToSurfaceReflectanceImageFilter<DoubleVectorImageType,
DoubleVectorImageType> ReflectanceToSurfaceReflectanceImageFilterType;
typedef ReflectanceToSurfaceReflectanceImageFilterType::FilterFunctionValuesType FilterFunctionValuesType;
typedef FilterFunctionValuesType::ValuesVectorType ValuesVectorType;
typedef AtmosphericCorrectionParameters AtmosphericCorrectionParametersType;
typedef AtmosphericCorrectionParametersType::AerosolModelType AerosolModelType;
typedef otb::SurfaceAdjacencyEffect6SCorrectionSchemeFilter<DoubleVectorImageType,DoubleVectorImageType>
SurfaceAdjacencyEffect6SCorrectionSchemeFilterType;
typedef otb::GroundSpacingImageFunction<DoubleVectorImageType> GroundSpacingImageType;
typedef DoubleVectorImageType::IndexType IndexType;
typedef GroundSpacingImageType::FloatType FloatType;
typedef GroundSpacingImageType::ValueType ValueType;
typedef IndexType::IndexValueType IndexValueType;
private:
string m_inImageName;
bool m_currentEnabledStateOfFluxParam;
void DoInit()
{
SetName("OpticalCalibration");
SetDescription("Perform optical calibration TOA/TOC (Top Of Atmosphere/Top Of Canopy). Supported sensors: QuickBird, Ikonos, WorldView2, Formosat, Spot5, Pleiades, Spot6");
// Documentation
SetDocName("Optical calibration");
SetDocLongDescription("The application allows to convert pixel values from DN (for Digital Numbers) to physically interpretable and comparable values. Calibrated values are called surface reflectivity and its values lie in the range [0, 1].\nThe first level is called Top Of Atmosphere (TOA) reflectivity. It takes into account the sensor gain, sensor spectral response and the solar illuminations.\nThe second level is called Top Of Canopy (TOC) reflectivity. In addition to sensor gain and solar illuminations, it takes into account the optical thickness of the atmosphere, the atmospheric pressure, the water vapor amount, the ozone amount, as well as the composition and amount of aerosol gasses.\nIt is also possible to indicate an AERONET file which contains atmospheric parameters (version 1 and version 2 of Aeronet file are supported.\n"
"\n--------------------------\n\n"
"If the sensor is not supported by the metadata interface factory of OTB, users still have the possibility to give the needed parameters to the application.\n"
"For TOA conversion, these parameters are : \n"
"- day and month of acquisition, or flux normalization coefficient;\n"
"- sun elevation angle;\n"
"- gains and biases, one pair of values for each band (passed by a file);\n"
"- solar illuminations, one value for each band (passed by a file).\n\n"
"For the conversion from DN (for Digital Numbers) to spectral radiance (or 'TOA radiance') L, the following formula is used :\n\n"
"(1)\tL(b) = DN(b)/gain(b)+bias(b)\t(in W/m²/steradians/micrometers)\twith b being a band ID.\n\n"
"These values are provided by the user thanks to a simple txt file with two lines, one for the gains and one for the biases.\n"
"Each value must be separated with colons (:), with eventual spaces. Blank lines are not allowed. If a line begins with the '#' symbol, then it is considered as comments.\n"
"Note that sometimes, the values provided by certain metadata files assume the formula L(b) = gain(b)*DC(b)+bias(b).\n"
"In this case, be sure to provide the inverse gain values so that the application can correctly interpret them.\n\n"
"In order to convert TOA radiance to TOA reflectance, the following formula is used :\n\n"
"(2)\tR(b) = (pi*L(b)*d²) / (ESUN(b)*cos(θ))\t(no dimension)\twhere : \n\n"
"- L(b) is the spectral radiance for band b \n"
"- pi is the famous mathematical constant (3.14159...) \n"
"- d is the earth-sun distance (in astronomical units) and depends on the acquisition's day and month \n"
"- ESUN(b) is the mean TOA solar irradiance (or solar illumination) in W/m²/micrometers\n"
"- θ is the solar zenith angle in degrees. \n"
"Note that the application asks for the solar elevation angle, and will perfom the conversion to the zenith angle itself (ze. angle = 90° - el. angle).\n"
"Note also that ESUN(b) not only depends on the band b, but also on the spectral sensitivity of the sensor in this particular band. "
"In other words, the influence of spectral sensitivities is included within the ESUN different values.\n"
"These values are provided by the user thanks to a txt file following the same convention as before.\n"
"Instead of providing the date of acquisition, the user can also provide a flux normalization coefficient 'fn'. "
"The formula used instead will be the following : \n\n"
"(3) \tR(b) = (pi*L(b)) / (ESUN(b)*fn²*cos(θ)) \n\n"
"Whatever the formula used (2 or 3), the user should pay attention to the interpretation of the parameters he will provide to the application, "
"by taking into account the original formula that the metadata files assum.\n\n"
"Below, we give two examples of txt files containing information about gains/biases and solar illuminations :\n\n"
"- gainbias.txt :\n"
"# Gain values for each band. Each value must be separated with colons (:), with eventual spaces. Blank lines not allowed.\n"
"10.4416 : 9.529 : 8.5175 : 14.0063\n"
"# Bias values for each band.\n"
"0.0 : 0.0 : 0.0 : 0.0\n\n"
"- solarillumination.txt : \n"
"# Solar illumination values in watt/m2/micron ('micron' means actually 'for each band').\n"
"# Each value must be separated with colons (:), with eventual spaces. Blank lines not allowed.\n"
"1540.494123 : 1826.087443 : 1982.671954 : 1094.747446\n\n"
"Finally, the 'Logs' tab provides usefull messages that can help the user in knowing the process different status." );
SetDocLimitations("None");
SetDocAuthors("OTB-Team");
SetDocSeeAlso("The OTB CookBook");
AddDocTag(Tags::Calibration);
AddParameter(ParameterType_InputImage, "in", "Input");
SetParameterDescription("in", "Input image filename (values in DN)");
AddParameter(ParameterType_OutputImage, "out", "Output");
SetParameterDescription("out","Output calibrated image filename");
AddRAMParameter();
AddParameter(ParameterType_Choice, "level", "Calibration Level");
AddChoice("level.toa", "Image to TOA reflectance");
AddChoice("level.toatoim", "TOA reflectance to Image");
AddChoice("level.toc", "TOC : Top Of Canopy (EXPERIMENTAL)");
SetParameterString("level", "toa");
AddParameter(ParameterType_Empty, "milli", "Convert to milli reflectance");
SetParameterDescription("milli", "Flag to use milli-reflectance instead of reflectance.\n"
"This allows to save the image with integer pixel type (in the range [0, 1000] instead of floating point in the range [0, 1]. In order to do that, use this option and set the output pixel type (-out filename double for example)");
DisableParameter("milli");
MandatoryOff("milli");
Manuel Grizonnet
committed
AddParameter(ParameterType_Empty, "clamp", "Clamp of reflectivity values between [0, 100]");
SetParameterDescription("clamp", "Clamping in the range [0, 100]. It can be useful to preserve area with specular reflectance.");
Manuel Grizonnet
committed
EnableParameter("clamp");
MandatoryOff("clamp");
//Acquisition parameters (TOA)
AddParameter(ParameterType_Group,"acquisition","Acquisition parameters (TOA)");
SetParameterDescription("acquisition","This group allows to set the parameters related to the acquisition conditions.");
//Day
AddParameter(ParameterType_Int, "acquisition.day", "Day");
SetParameterDescription("acquisition.day", "Day (1-31)");
SetMinimumParameterIntValue("acquisition.day", 1);
SetMaximumParameterIntValue("acquisition.day", 31);
EnableParameter("acquisition.day");
MandatoryOn("acquisition.day");
//Month
AddParameter(ParameterType_Int, "acquisition.month", "Month");
SetParameterDescription("acquisition.month", "Month (1-12)");
SetMinimumParameterIntValue("acquisition.month", 1);
SetMaximumParameterIntValue("acquisition.month", 12);
MandatoryOn("acquisition.month");
//Flux normalization coefficient
AddParameter(ParameterType_Float, "acquisition.fluxnormalizationcoefficient", "Flux Normalization");
SetParameterDescription("acquisition.fluxnormalizationcoefficient", "Flux Normalization Coefficient");
SetMinimumParameterFloatValue("acquisition.fluxnormalizationcoefficient", 0.);
MandatoryOff("acquisition.fluxnormalizationcoefficient");
//Sun elevation angle
AddParameter(ParameterType_Float, "acquisition.sunelevationangle", "Sun elevation angle (°)");
SetParameterDescription("acquisition.sunelevationangle", "Sun elevation angle");
SetMinimumParameterFloatValue("acquisition.sunelevationangle", 0.);
SetMaximumParameterFloatValue("acquisition.sunelevationangle", 120.);
MandatoryOn("acquisition.sunelevationangle");
AddParameter(ParameterType_InputFilename, "acquisition.gainbias", "Gains | biases");
SetParameterDescription("acquisition.gainbias", "Gains | biases");
MandatoryOn("acquisition.gainbias");
//Solar illuminations
AddParameter(ParameterType_InputFilename, "acquisition.solarilluminations", "Solar illuminations");
SetParameterDescription("acquisition.solarilluminations", "Solar illuminations (one value per band)");
MandatoryOn("acquisition.solarilluminations");
//Atmospheric parameters (TOC)
AddParameter(ParameterType_Group,"atmo","Atmospheric parameters (TOC)");
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
SetParameterDescription("atmo","This group allows to set the atmospheric parameters.");
AddParameter(ParameterType_Choice, "atmo.aerosol", "Aerosol Model");
AddChoice("atmo.aerosol.noaersol", "No Aerosol Model");
AddChoice("atmo.aerosol.continental", "Continental");
AddChoice("atmo.aerosol.maritime", "Maritime");
AddChoice("atmo.aerosol.urban", "Urban");
AddChoice("atmo.aerosol.desertic", "Desertic");
AddParameter(ParameterType_Float, "atmo.oz", "Ozone Amount");
SetParameterDescription("atmo.oz", "Ozone Amount");
AddParameter(ParameterType_Float, "atmo.wa", "Water Vapor Amount");
SetParameterDescription("atmo.wa", "Water Vapor Amount (in saturation fraction of water)");
AddParameter(ParameterType_Float, "atmo.pressure", "Atmospheric Pressure");
SetParameterDescription("atmo.pressure", "Atmospheric Pressure (in hPa)");
AddParameter(ParameterType_Float, "atmo.opt", "Aerosol Optical Thickness");
SetParameterDescription("atmo.opt", "Aerosol Optical Thickness");
SetDefaultParameterFloat("atmo.oz", 0.);
SetDefaultParameterFloat("atmo.wa", 2.5);
SetDefaultParameterFloat("atmo.pressure", 1030.);
SetDefaultParameterFloat("atmo.opt", 0.2);
MandatoryOff("atmo.oz");
MandatoryOff("atmo.wa");
MandatoryOff("atmo.pressure");
MandatoryOff("atmo.opt");
AddParameter(ParameterType_InputFilename, "atmo.aeronet", "Aeronet File");
SetParameterDescription("atmo.aeronet","Aeronet file containing atmospheric parameters");
MandatoryOff("atmo.aeronet");
AddParameter(ParameterType_InputFilename, "atmo.rsr", "Relative Spectral Response File");
std::ostringstream oss;
oss << "Sensor relative spectral response file"<<std::endl;
oss << "By default the application gets these informations in the metadata";
SetParameterDescription("atmo.rsr", oss.str());
MandatoryOff("atmo.rsr");
// Window radius for adjacency effects correction
AddParameter(ParameterType_Int, "atmo.radius", "Window radius (adjacency effects)");
SetParameterDescription("atmo.radius","Window radius for adjacency effects corrections");
MandatoryOff("atmo.radius");
SetDefaultParameterInt("atmo.radius", 2);
// Doc example parameter settings
SetDocExampleParameterValue("in", "QB_1_ortho.tif");
SetDocExampleParameterValue("level", "toa");
SetDocExampleParameterValue("out", "OpticalCalibration.tif");
m_inImageName = "";
m_currentEnabledStateOfFluxParam=false;
}
void DoUpdateParameters()
Manuel Grizonnet
committed
{
std::ostringstream ossOutput;
//ossOutput << std::endl << "--DoUpdateParameters--" << std::endl;
// Manage the case where a new input is provided: we should try to retrieve image metadata
if (HasValue("in"))
{
bool newInputImage = false;
string tempName = GetParameterString("in");
// Check if the input image change
if (tempName != m_inImageName)
{
m_inImageName = tempName;
newInputImage = true;
if (newInputImage)
{
ossOutput << std::endl << "File: " << m_inImageName << std::endl;
//Check if valid metadata informations are available to compute ImageToLuminance and LuminanceToReflectance
FloatVectorImageType::Pointer inImage = GetParameterFloatVectorImage("in");
itk::MetaDataDictionary dict = inImage->GetMetaDataDictionary();
OpticalImageMetadataInterface::Pointer lImageMetadataInterface = OpticalImageMetadataInterfaceFactory::CreateIMI(dict);
string IMIName( lImageMetadataInterface->GetNameOfClass() ) , IMIOptDfltName("OpticalDefaultImageMetadataInterface");
if ( (IMIName != IMIOptDfltName))
{
ossOutput << "Sensor detected: " << lImageMetadataInterface->GetSensorID() << std::endl;
itk::VariableLengthVector<double> vlvector;
std::stringstream ss;
ossOutput << "Parameters extract from input image: "<< std::endl
<< "\tAcquisition Day: " << lImageMetadataInterface->GetDay() << std::endl
<< "\tAcquisition Month: " << lImageMetadataInterface->GetMonth() << std::endl
<< "\tAcquisition Sun Elevation Angle: " << lImageMetadataInterface->GetSunElevation() << std::endl;
vlvector = lImageMetadataInterface->GetPhysicalGain();
for(unsigned int k=0; k<vlvector.Size(); k++)
ossOutput << vlvector[k] << " ";
ossOutput << std::endl;
vlvector = lImageMetadataInterface->GetPhysicalBias();
for(unsigned int k=0; k<vlvector.Size(); k++)
ossOutput << vlvector[k] << " ";
ossOutput << std::endl;
MandatoryOff("acquisition.gainbias");
vlvector = lImageMetadataInterface->GetSolarIrradiance();
for(unsigned int k=0; k<vlvector.Size(); k++)
ossOutput << vlvector[k] << " ";
ossOutput << std::endl;
MandatoryOff("acquisition.solarilluminations");
if (HasUserValue("acquisition.day"))
ossOutput << "Acquisition Day already set by user: no overload" <<std::endl;
else
{
SetParameterInt("acquisition.day", lImageMetadataInterface->GetDay());
if (IsParameterEnabled("acquisition.fluxnormalizationcoefficient"))
DisableParameter("acquisition.day");
}
if (HasUserValue("acquisition.month"))
ossOutput << "Acquisition Month already set by user: no overload" <<std::endl;
else
{
SetParameterInt("acquisition.month", lImageMetadataInterface->GetMonth());
if (IsParameterEnabled("acquisition.fluxnormalizationcoefficient"))
DisableParameter("acquisition.month");
}
ossOutput << "Acquisition Sun Elevation Angle already set by user: no overload" <<std::endl;
SetParameterFloat("acquisition.sunelevationangle", lImageMetadataInterface->GetSunElevation());
}
else
{
ossOutput << "Sensor unknown!"<< std::endl;
ossOutput << "Additional parameters are necessary, please provide them (cf. documentation)!"<< std::endl;
/*GetLogger()->Info("\n-------------------------------------------------------------\n"
"Sensor ID : unknown...\n"
"The application didn't manage to find an appropriate metadata interface; "
"custom values must be provided in order to perform TOA conversion.\nPlease, set the following fields :\n"
"- day and month of acquisition, or flux normalization coefficient;\n"
"- sun elevation angle;\n"
"- gains and biases for each band (passed by a file, see documentation);\n"
"- solar illuminationss for each band (passed by a file, see documentation).\n"
}
// Manage the case where fluxnormalizationcoefficient is modified by user
if (m_currentEnabledStateOfFluxParam != IsParameterEnabled("acquisition.fluxnormalizationcoefficient"))
if (IsParameterEnabled("acquisition.fluxnormalizationcoefficient"))
{
ossOutput << std::endl << "Flux Normalization Coefficient will be used" << std::endl;
DisableParameter("acquisition.day");
DisableParameter("acquisition.month");
MandatoryOff("acquisition.day");
MandatoryOff("acquisition.month");
MandatoryOn("acquisition.fluxnormalizationcoefficient");
m_currentEnabledStateOfFluxParam = true;
}
else
{
ossOutput << std::endl << "Day and Month will be used" << std::endl;
EnableParameter("acquisition.day");
EnableParameter("acquisition.month");
MandatoryOn("acquisition.day");
MandatoryOn("acquisition.month");
MandatoryOff("acquisition.fluxnormalizationcoefficient");
m_currentEnabledStateOfFluxParam = false;
}
}
if (!ossOutput.str().empty())
otbAppLogINFO(<< ossOutput.str());
void DoExecute()
{
//Main filters instanciations
m_ImageToLuminanceFilter = ImageToLuminanceImageFilterType::New();
m_LuminanceToReflectanceFilter = LuminanceToReflectanceImageFilterType::New();
m_ReflectanceToSurfaceReflectanceFilter = ReflectanceToSurfaceReflectanceImageFilterType::New();
m_ReflectanceToLuminanceFilter = ReflectanceToLuminanceImageFilterType::New();
m_LuminanceToImageFilter = LuminanceToImageImageFilterType::New();
//Other instanciations
m_ScaleFilter = ScaleFilterOutDoubleType::New();
m_ScaleFilter->InPlaceOn();
m_ClampFilter = ClampFilterType::New();
FloatVectorImageType::Pointer inImage = GetParameterFloatVectorImage("in");

Mickael Savinaud
committed
// Set (Date and Day) OR FluxNormalizationCoef to corresponding filters
if ( !IsParameterEnabled("acquisition.fluxnormalizationcoefficient") )
{
m_LuminanceToReflectanceFilter->SetDay(GetParameterInt("acquisition.day"));
m_LuminanceToReflectanceFilter->SetMonth(GetParameterInt("acquisition.month"));

Mickael Savinaud
committed
m_ReflectanceToLuminanceFilter->SetDay(GetParameterInt("acquisition.day"));
m_ReflectanceToLuminanceFilter->SetMonth(GetParameterInt("acquisition.month"));
}
else
{
m_LuminanceToReflectanceFilter->SetFluxNormalizationCoefficient(GetParameterFloat("acquisition.fluxnormalizationcoefficient"));

Mickael Savinaud
committed
m_ReflectanceToLuminanceFilter->SetFluxNormalizationCoefficient(GetParameterFloat("acquisition.fluxnormalizationcoefficient"));
}

Mickael Savinaud
committed
// Set Sun Elevation Angle to corresponding filters
m_LuminanceToReflectanceFilter->SetElevationSolarAngle(GetParameterFloat("acquisition.sunelevationangle"));
m_ReflectanceToLuminanceFilter->SetElevationSolarAngle(GetParameterFloat("acquisition.sunelevationangle"));

Mickael Savinaud
committed
// Set Gain and Bias to corresponding filters
if (HasValue("acquisition.gainbias"))

Mickael Savinaud
committed
// Try to retrieve information from file provided by user

Mickael Savinaud
committed
std::ifstream file(filename.c_str(), std::ios::in);

Mickael Savinaud
committed
unsigned int numLine = 0;

Mickael Savinaud
committed
{
if (line[0]!='#')
{
numLine++;
std::vector<double> values;

Mickael Savinaud
committed
string value; double dvalue;
while ( getline( iss, value, ':' ) )
{
std::istringstream iss2(value);
iss2 >> dvalue;
values.push_back(dvalue);

Mickael Savinaud
committed
itk::VariableLengthVector<double> vlvector;

Mickael Savinaud
committed
switch (numLine)
{

Mickael Savinaud
committed
m_LuminanceToImageFilter->SetAlpha(vlvector);
GetLogger()->Info("Trying to get gains/biases information... OK (1/2)\n");
break;

Mickael Savinaud
committed
m_ImageToLuminanceFilter->SetBeta(vlvector);

Mickael Savinaud
committed
GetLogger()->Info("Trying to get gains/biases information... OK (2/2)\n");
break;
default : itkExceptionMacro(<< "File : " << filename << " contains wrong number of lines (needs two, one for gains and one for biases)");
}
}
}

Mickael Savinaud
committed
}

Mickael Savinaud
committed
itkExceptionMacro(<< "File : " << filename << " couldn't be opened");
}
else
{
//Try to retrieve information from image metadata
itk::MetaDataDictionary dict = inImage->GetMetaDataDictionary();
OpticalImageMetadataInterface::Pointer lImageMetadataInterface = OpticalImageMetadataInterfaceFactory::CreateIMI(dict);
string IMIName( lImageMetadataInterface->GetNameOfClass() ) , IMIOptDfltName("OpticalDefaultImageMetadataInterface");
if (IMIName != IMIOptDfltName)
{
m_ImageToLuminanceFilter->SetAlpha(lImageMetadataInterface->GetPhysicalGain());
m_LuminanceToImageFilter->SetAlpha(lImageMetadataInterface->GetPhysicalGain());
m_ImageToLuminanceFilter->SetBeta(lImageMetadataInterface->GetPhysicalBias());
m_LuminanceToImageFilter->SetBeta(lImageMetadataInterface->GetPhysicalBias());
}
else
itkExceptionMacro(<< "Please, provide a type of sensor supported by OTB for automatic metadata extraction! ");

Mickael Savinaud
committed
}

Mickael Savinaud
committed
// Set Solar Illumination to corresponding filters
if (HasValue("acquisition.solarilluminations"))
{
// Try to retrieve information from file provided by user
string filename(GetParameterString("acquisition.solarilluminations"));
std::ifstream file(filename.c_str(), std::ios::in);

Mickael Savinaud
committed
{
if (line[0]!='#')
{
std::vector<double> values;

Mickael Savinaud
committed
string value; double dvalue;
while ( getline( iss, value, ':' ) )
{
std::istringstream iss2(value);
iss2 >> dvalue;
values.push_back(dvalue);

Mickael Savinaud
committed
itk::VariableLengthVector<double> vlvector;

Mickael Savinaud
committed
m_LuminanceToReflectanceFilter->SetSolarIllumination(vlvector);
m_ReflectanceToLuminanceFilter->SetSolarIllumination(vlvector);
}
}

Mickael Savinaud
committed
}

Mickael Savinaud
committed
itkExceptionMacro(<< "File : " << filename << " couldn't be opened");

Mickael Savinaud
committed
else

Mickael Savinaud
committed
//Try to retrieve information from image metadata
itk::MetaDataDictionary dict = inImage->GetMetaDataDictionary();
OpticalImageMetadataInterface::Pointer lImageMetadataInterface = OpticalImageMetadataInterfaceFactory::CreateIMI(dict);
string IMIName( lImageMetadataInterface->GetNameOfClass() ) , IMIOptDfltName("OpticalDefaultImageMetadataInterface");
if (IMIName != IMIOptDfltName)
{
m_LuminanceToReflectanceFilter->SetSolarIllumination(lImageMetadataInterface->GetSolarIrradiance());
m_ReflectanceToLuminanceFilter->SetSolarIllumination(lImageMetadataInterface->GetSolarIrradiance());
}
else
itkExceptionMacro(<< "Please, provide a type of sensor supported by OTB for automatic metadata extraction! ");
switch ( GetParameterInt("level") )
Manuel Grizonnet
committed
{
GetLogger()->Info("Compute Top of Atmosphere reflectance\n");
//Pipeline
m_ImageToLuminanceFilter->SetInput(inImage);
m_LuminanceToReflectanceFilter->SetInput(m_ImageToLuminanceFilter->GetOutput());
m_LuminanceToReflectanceFilter->SetUseClamp(IsParameterEnabled("clamp"));
m_LuminanceToReflectanceFilter->UpdateOutputInformation();
m_ScaleFilter->SetInput(m_LuminanceToReflectanceFilter->GetOutput());
GetLogger()->Info("Convert Top of Atmosphere reflectance to image DN\n");
//Pipeline
m_ReflectanceToLuminanceFilter->SetInput(inImage);
m_LuminanceToImageFilter->SetInput(m_ReflectanceToLuminanceFilter->GetOutput());
m_LuminanceToImageFilter->UpdateOutputInformation();
m_ScaleFilter->SetInput(m_LuminanceToImageFilter->GetOutput());
break;
case Level_TOC:
GetLogger()->Info("Convert Top of Canopy reflectance\n");
//Pipeline
m_ImageToLuminanceFilter->SetInput(inImage);
m_LuminanceToReflectanceFilter->SetInput(m_ImageToLuminanceFilter->GetOutput());
m_ReflectanceToSurfaceReflectanceFilter->SetInput(m_LuminanceToReflectanceFilter->GetOutput());
m_ReflectanceToSurfaceReflectanceFilter->SetIsSetAtmosphericRadiativeTerms(false);
m_ReflectanceToSurfaceReflectanceFilter->SetUseGenerateParameters(true);
m_ReflectanceToSurfaceReflectanceFilter->UpdateOutputInformation();
m_ReflectanceToSurfaceReflectanceFilter->SetUseGenerateParameters(false);
m_AtmosphericParam = m_ReflectanceToSurfaceReflectanceFilter->GetCorrectionParameters();
//AerosolModelType aeroMod = AtmosphericCorrectionParametersType::NO_AEROSOL;
switch ( GetParameterInt("atmo.aerosol") )
{
case Aerosol_Desertic:
{
// Aerosol_Desertic correspond to 4 in the enum but actually in
// the class atmosphericParam it is known as parameter 5
m_AtmosphericParam->SetAerosolModel(static_cast<AerosolModelType>(5));
}
break;
default:
{
m_AtmosphericParam->SetAerosolModel(static_cast<AerosolModelType>(GetParameterInt("atmo.aerosol")));
}
break;
}
// Set the atmospheric param
m_AtmosphericParam->SetOzoneAmount(GetParameterFloat("atmo.oz"));
m_AtmosphericParam->SetWaterVaporAmount(GetParameterFloat("atmo.wa"));
m_AtmosphericParam->SetAtmosphericPressure(GetParameterFloat("atmo.pressure"));
m_AtmosphericParam->SetAerosolOptical(GetParameterFloat("atmo.opt"));
// Relative Spectral Response File
if (IsParameterEnabled("rsr"))
m_ReflectanceToSurfaceReflectanceFilter->SetFilterFunctionValuesFileName(GetParameterString("rsr"));
}
// Aeronet file
if (IsParameterEnabled("atmo.aeronet"))
{
GetLogger()->Info("Use aeronet file to retrieve atmospheric parameters");
m_ReflectanceToSurfaceReflectanceFilter->SetAeronetFileName(GetParameterString("atmo.aeronet"));
m_ReflectanceToSurfaceReflectanceFilter->SetIsSetAtmosphericRadiativeTerms(false);
m_ReflectanceToSurfaceReflectanceFilter->SetUseGenerateParameters(true);
m_ReflectanceToSurfaceReflectanceFilter->GenerateParameters();
m_ReflectanceToSurfaceReflectanceFilter->UpdateOutputInformation();
m_ReflectanceToSurfaceReflectanceFilter->SetUseGenerateParameters(false);
// std::ostringstream oss_atmo;
// oss_atmo << "Atmospheric parameters: " << std::endl;
// oss_atmo << m_AtmosphericParam;
// GetLogger()->Info(oss_atmo.str());
std::ostringstream oss;
oss.str("");
oss << std::endl << m_AtmosphericParam;
AtmosphericRadiativeTerms::Pointer atmoTerms = m_ReflectanceToSurfaceReflectanceFilter->GetAtmosphericRadiativeTerms();
oss << std::endl << std::endl << atmoTerms;
GetLogger()->Info("Atmospheric correction parameters compute by 6S : " + oss.str());
//Compute adjacency effect
// m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter
// = SurfaceAdjacencyEffect6SCorrectionSchemeFilterType::New();
// m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->SetInput(m_ReflectanceToSurfaceReflectanceFilter->GetOutput());
// m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->
// SetAtmosphericRadiativeTerms(
// m_ReflectanceToSurfaceReflectanceFilter->GetAtmosphericRadiativeTerms());
// m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->SetZenithalViewingAngle(
// m_AtmosphericParam->GetViewingZenithalAngle());
// m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->SetWindowRadius(GetParameterInt("radius"));
// //estimate ground spacing in kilometers
// GroundSpacingImageType::Pointer groundSpacing = GroundSpacingImageType::New();
// groundSpacing->SetInputImage(inImage);
// IndexType index;
// vnl_random rand;
// index[0] = static_cast<IndexValueType>(rand.lrand32(0, inImage->GetLargestPossibleRegion().GetSize()[0]));
// index[1] = static_cast<IndexValueType>(rand.lrand32(0, inImage->GetLargestPossibleRegion().GetSize()[1]));
// FloatType tmpSpacing = groundSpacing->EvaluateAtIndex(index);
// const float spacingInKilometers = (std::max(tmpSpacing[0], tmpSpacing[1])) / 1000.;
// // std::ostringstream oss2;
// // oss2.str("");
// // oss2 << spacingInKilometers;
// // GetLogger()->Info("Spacing in kilometers " + oss2.str());
// m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->
// SetPixelSpacingInKilometers(spacingInKilometers);
// //rescale the surface reflectance in milli-reflectance
// m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->UpdateOutputInformation();
// //m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->Update();
// m_ScaleFilter->SetInput(m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter->GetOutput());
if (!IsParameterEnabled("clamp"))
m_ScaleFilter->SetInput(m_ReflectanceToSurfaceReflectanceFilter->GetOutput());
}
else
{
GetLogger()->Info("Clamp values between [0, 100]");
m_ClampFilter->SetInput(m_ReflectanceToSurfaceReflectanceFilter->GetOutput());
m_ClampFilter->ClampOutside(0.0, 1.0);
m_ScaleFilter->SetInput(m_ClampFilter->GetOutput());
}
}
break;

Julien Michel
committed
// Output Image
double scale = 1.0;
if (IsParameterEnabled("milli"))
GetLogger()->Info("Use milli-reflectance");
if ( (GetParameterInt("level") == Level_IM_TOA) || (GetParameterInt("level") == Level_TOC) )
}
m_ScaleFilter->SetCoef(scale);
SetParameterOutputImage("out", m_ScaleFilter->GetOutput());
//Keep object references as a members of the class, else the pipeline will be broken after exiting DoExecute().
ImageToLuminanceImageFilterType ::Pointer m_ImageToLuminanceFilter;
LuminanceToReflectanceImageFilterType::Pointer m_LuminanceToReflectanceFilter;
ReflectanceToLuminanceImageFilterType::Pointer m_ReflectanceToLuminanceFilter;
ReflectanceToSurfaceReflectanceImageFilterType::Pointer m_ReflectanceToSurfaceReflectanceFilter;
ScaleFilterOutDoubleType::Pointer m_ScaleFilter;
AtmosphericCorrectionParametersType::Pointer m_AtmosphericParam;
ClampFilterType::Pointer m_ClampFilter;
SurfaceAdjacencyEffect6SCorrectionSchemeFilterType::Pointer m_SurfaceAdjacencyEffect6SCorrectionSchemeFilter;
};
}// namespace Wrapper
} // namespace otb
OTB_APPLICATION_EXPORT(otb::Wrapper::OpticalCalibration)