Skip to content
Snippets Groups Projects
Commit f0bca92a authored by Sébastien Dinot's avatar Sébastien Dinot
Browse files

MRG

parents 7aad3993 42106414
No related branches found
No related tags found
No related merge requests found
......@@ -31,16 +31,16 @@
//
// This example illustrates the use of the
// \doxygen{otb}{FastICAImageFilter}.
// This filter computes a Fast Independant Components Analysis transform.
// This filter computes a Fast Independent Components Analysis transform.
//
// Like Principal Components Analysis, Independent Component Analysis
// \cite{jutten1991blind} computes a set of
// orthogonal linear combinations, but the criterion of Fast ICA is
// different: instead of maximizing variance, it tries to maximize
// stastistical independance between components.
// statistical independence between components.
//
// In the Fast ICA algorithm \cite{hyvarinen1999fast},
// statistical independance is mesured by evaluating non-Gaussianity
// statistical independence is measured by evaluating non-Gaussianity
// of the components, and the maximization is done in an iterative way.
// The first step required to use this filter is to include its header file.
......@@ -68,9 +68,9 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// We start by defining the types for the images and the reader and
// We start by defining the types for the images, the reader, and
// the writer. We choose to work with a \doxygen{otb}{VectorImage},
// since we will produce a multi-channel image (the principal
// since we will produce a multi-channel image (the independent
// components) from a multi-channel input image.
//
// Software Guide : EndLatex
......@@ -108,8 +108,8 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// We then set the number of principal
// components required as output. We can choose to get less PCs than
// We then set the number of independent
// components required as output. We can choose to get less ICs than
// the number of input bands.
//
// Software Guide : EndLatex
......@@ -194,7 +194,7 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
// Figure~\ref{fig:FastICA_FILTER} shows the result of applying forward
// and reverse FastICA transformation to a 8 bands Wordlview2 image.
// and reverse FastICA transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{FastICA-input-pretty.eps}
......
......@@ -81,7 +81,7 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// We start by defining the types for the images and the reader and
// We start by defining the types for the images, the reader, and
// the writer. We choose to work with a \doxygen{otb}{VectorImage},
// since we will produce a multi-channel image (the principal
// components) from a multi-channel input image.
......@@ -231,7 +231,7 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
// Figure~\ref{fig:MNF_FILTER} shows the result of applying forward
// and reverse MNF transformation to a 8 bands Wordlview2 image.
// and reverse MNF transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{MNF-input-pretty.eps}
......
......@@ -68,7 +68,7 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// We can now declare the types for the reader. Since the images
// can be vey large, we will force the pipeline to use
// can be very large, we will force the pipeline to use
// streaming. For this purpose, the file writer will be
// streamed. This is achieved by using the
// \doxygen{otb}{StreamingImageFileWriter} class.
......
......@@ -43,6 +43,7 @@
//
// The second Principal Component Analysis is then applied to the
// noise-whitened image, giving the Maximum Noise Fraction transform.
// Applying PCA on noise-whitened image consists in ranking Principal Components according to signal to noise ratio.
//
// It is basically a reformulation of the Maximum Noise Fraction algorithm.
//
......@@ -81,7 +82,7 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// We start by defining the types for the images and the reader and
// We start by defining the types for the images, the reader and
// the writer. We choose to work with a \doxygen{otb}{VectorImage},
// since we will produce a multi-channel image (the principal
// components) from a multi-channel input image.
......@@ -232,7 +233,7 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
// Figure~\ref{fig:NAPCA_FILTER} shows the result of applying forward
// and reverse NA-PCA transformation to a 8 bands Wordlview2 image.
// and reverse NA-PCA transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{napca-input-pretty.eps}
......
......@@ -97,7 +97,10 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
//
// The only parameter needed for the PCA is the number of principal
// components required as output. We can choose to get less PCs than
// components required as output. Principal components are linear combination of input components
// (here the input image bands),
// which are selected using Singular Value Decomposition eigen vectors sorted by eigen value.
// We can choose to get less Principal Components than
// the number of input bands.
//
// Software Guide : EndLatex
......@@ -157,7 +160,7 @@ int main(int argc, char* argv[])
// Software Guide : BeginLatex
// Figure~\ref{fig:PCA_FILTER} shows the result of applying forward
// and reverse PCA transformation to a 8 bands Wordlview2 image.
// and reverse PCA transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{input-pretty.eps}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment